<u> — ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ — </u>

Плодородие почв

УЛК 631.582.874.56

ВЛИЯНИЕ СИДЕРАЛЬНОГО УДОБРЕНИЯ НА СОДЕРЖАНИЕ ГУМУСА В ПОЧВЕ

© 2024 г. А. Г. Дзюин*

Удмуртский федеральный исследовательский центр Уральского отделения РАН 427007 Ижевск, Завьяловский р-н, с. Первомайский, ул. Ленина, 1, Россия *E-mail: sanva.dzyuin@yandex.ru

В длительном опыте, который заложен в 1971 г. в 2-х закладках с интервалом в один год, изучили влияние сидерального удобрения на содержание гумуса в почве в течение 6-ти ротаций 8-польного севооборота. Почва – дерново-среднеподзолистая среднесуглинистая на покровном краснобуром тяжелом суглинке с агрохимическими показателями пахотного слоя до закладки опыта: р $H_{\rm KCI}$ 5.0, $H_{\rm r}$ – 2.7, S – 14.8 ммоль /100 г, V – 85.2%, содержание P_2O_5 – 52, K_2O – 98 мг/кг почвы. В 6-й ротации вместо навоза в качестве органического удобрения использовали сидеральное удобрение – горохоовсяную смесь (18 т/га). В опыте изучали уровни применения минеральных удобрений на разных фонах с использованием извести (по 1 + 2 г.к. в 1- и 2-й ротациях севооборота), навоза (40 т/га в 1-й и по 60 т/га во 2-5-й ротациях), сидерата (в 6-й ротации) и без них. Варианты с удобрениями: 1 - без удобрений, 5 - N10P10K10, 6 - N20P20K20, 7 - N30P30K30, 8 - N30P30K30N40P40K40, 9-N50P50K50, 10-N60P60K60. За 4 ротации севооборота (32 года) без внесения фоновых удобрений содержание гумуса снизилось с 2.5 до 1.96—1.92% (на 0.54 и 0.58 абс. %), на фоне навоза – до 2.38%, извести + навоза – до 2.30%. В 5-й ротации на фонах с внесением навоза его содержание в среднем в 7-ми вариантах возросло до 2.62 и 2.70%, что было больше исходного (2.50%) на 0.12 и 0.20 абс. %. В 6-й ротации использование горохоовсяной смеси в качестве сидерата привело к снижению достигнутого путем периодического использования навоза (один раз в каждую ротацию) и соломы озимой ржи (по 2 раза в 3-6-й ротациях) уровня содержания гумуса на 0.28-0.30 абс. %.

Ключевые слова: севооборот, система удобрения, сидерат, органическое вещество, гумус.

DOI: 10.31857/S0002188124010029

ВВЕДЕНИЕ

В Северо-Восточном регионе Европейской части Нечерноземной зоны в основном залегают дерново-подзолистые почвы с низким плодородием. В Уд- муртской республике, например, пахотные почвы представлены ими в количестве 79.3% 1]. Урожайность возделываемых культур напрямую зависит от применения минеральных и органических удобрений. Однако в большинстве хозяйственных образований специалисты применяют недостаточное количество удобрений из-за их дороговизны. В результате этого плодородие почвы уменьшается, содержание питательных веществ с каждым годом сокращается [2]. Без целенаправленной систематической работы становится невозможным достичь желаемых результатов по поддержанию и наращиванию эффективного плодородия.

Наиболее действенным средством повышения урожайности сельскохозяйственных культур при

соблюдении агротехнических требований является применение комплекса известковых, органических и минеральных удобрений, что делает актуальным вопрос изучения их эффективности в севооборотах [3-5].

В Пермском ГСХОС в результате длительного применения (более 30 лет) навоза и минеральных удобрений продуктивность 8-польного севооборота от ротации к ротации возрастала [6, 7]. При внесении навоза и минеральных удобрений на фоне извести среднегодовая продуктивность культур по сравнению с контролем возросла почти в 2 раза и составила 3.15 т к.е./га. Навозно-минеральная система удобрения превзошла минеральную систему по продуктивности в 1-й ротации на 0.3—0.4, во 2-й ротации — на 0.5—0.7 т к.е./га [8].

В многолетнем опыте, проведенном на дерновоподзолистой легкосуглинистой почве [9], систематическое применение минеральных удобрений (N80P80K80) без извести привело к подкислению почвы. За 20 лет показатель pH_{KCI} снизился на 1.1 ед. в сравнении с исходным содержанием. В то же время не обнаружено существенного влияния на содержание подвижных форм элементов питания – фосфора и калия в сравнении с вариантом совместного применения минеральных удобрений и извести. В варианте без удобрений содержание гумуса снизилось на 0.16%, при использовании органо-минеральной системы увеличилось на 0.52%, при органической системе удобрения его содержание осталось на исходном уровне. Продуктивность севооборота в варианте без удобрений составила всего 1.66 т з.е./га, при использовании органической системы удобрений — 2.57, минеральной -3.29 и органо-минеральной -3.67 т з.е./га. В опыте ЦОС ВИУА использование органоминеральной системы удобрения (навоз 12.5 т/га севооборотной плошади и N127P75K176) обеспечило получение 5.0 т з.е./га [10].

Дерново-подзолистые почвы в республике без применения удобрений обеспечивают урожайность зерновых культур порядка 0.6–0.7 т/га. Основным условием получения высоких урожаев является повышение плодородия почв за счет снижения кислотности, увеличения содержания в них гумуса и подвижных форм питательных веществ – азота, фосфора и калия. Дерново-подзолистые суглинистые почвы республики содержат в пахотном слое 2-3% гумуса, причем оптимальным является показатель 2.5-3.0% [1]. В условиях биологизации земледелия важнейшим источником постоянно возобновляемых органогенных ресурсов являются сидераты. Они выполняют многофункциональные задачи в современном земледелии [11]. Если при достаточно оптимальном уровне содержания гумуса почвенные процессы сдвигались в сторону минерализации, то совместное применение минеральных и органических удобрений в виде сидерата и соломы в зерновом севообороте замедляло процессы минерализации [12]. Цель работы — изучение влияния систем удобрения при длительном их применении в севообороте на содержание гумуса в почве.

МЕТОДИКА ИССЛЕДОВАНИЯ

В Удмуртском НИИСХ с 1971 г. в составе Геосети опытов (головное научное учреждение — ВНИИА) ведутся исследования в длительном стационарном опыте, включенном в реестр аттестатов с удобрениями и другими агрохимическими средствами РАСХН. Почва — дерново-среднеподзолистая среднесуглинистая на покровном красно-буром тяжелом суглинке. Агрохимические показатели пахотного слоя до закладки опыта: р $H_{\rm KCI}$ 5.0, $H_{\rm r}$ — 2.7, S — 14.8 ммоль /100 г, V — 85.2%, содержание $P_{\rm 2}O_{\rm 5}$ — 52, $K_{\rm 2}O$ — 98 мг/кг почвы. Севооборот — парозернотравяной, 8-польный с чередованием культур: пар черный (в 6-й ротации — сидеральный)—озимая

рожь—кукуруза—яровая пшеница—клевер 1-го года пользования (**г.п.**)—клевер 2-го г.п.— озимая рожь—ячмень. Опыт заложен в 2-х повторностях с интервалом один год во времени. Схема опыта включает фактор A — фоны (табл. 1) и фактор B — варианты применения минеральных удобрений, в 5- и 6-й ротациях: 1 — без удобрений, D — D

Минеральные удобрения вносили ежегодно под предпосевную обработку почвы. На озимой ржи во всех вариантах весной добавочно применяли азотные удобрения в дозе N20 в качестве подкормки. На клевере 1- и 2-го г.п. удобрения не применяли. В севообороте использовали солому озимой ржи (1- и 5-й культурой севооборота) в качестве органических удобрений. Повторность опыта – четырехкратная. Ежегодно после уборки культур отбирали почвенные образцы в слое $0-20~{\rm cm}.~{\rm B}$ них определяли: р ${\rm H_{KCl}}-{\rm потенциоме}$ трическим методом (ГОСТ 26483-85), H_r – по Каппену (ГОСТ 26212-91), сумму поглощенных оснований – по Каппену–Гильковицу (ГОСТ 27821-88), степень насыщенности основаниями – расчетным способом, содержание подвижного фосфора и обменного калия – по Кирсанову (ГОСТ 26207-91). Метеоусловия приведены по данным агрометеостанции "Ижевск", которая ведет работу на территории опытного поля Удмуртского НИИСХ.

В период весенней вегетации растений — в мае 2004, 2007 и 2008 гг. были вполне удовлетворительные условия увлажнения (ГТК — 0.50, 0.40, 0.41 соответственно). Однако в 2005, 2010, 2011 гг. май был засушливым (ГТК — 0.14, 0.14, 0.20). Засушливые условия были также в июне 2006, 2008, 2009 и 2010 гг. (ГТК — 0.09, 0.09, 0.03, 0.15), в июле 2009 и 2010 гг. (ГТК — 0.27 и 0.13). Участившаяся засуха в июне и июле задерживала рост и развитие растений.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Важным показателем плодородия почвы является содержание и запасы гумуса, которые определяют все ее ценные агрономические свойства. Дерновоподзолистые суглинистые почвы республики, согласно моделям плодородия, должны содержать оптимальное количество гумуса в пахотном слое 2.5—3.0%. Средневзвешенное его содержание составляет всего 2.2% [1]. Общее содержание гумуса, его качественный состав зависят не только от природных факторов — климата, типа почвы, осадков, температурных условий, но и от величины поступления массы органического вещества в почву, а также применения систем удобрения. Расчеты, проведенные нами, используя данные урожайности культур в опыте и коэффициенты, выведенные по данным исследований

Таблица 1. Градации фактора *A* (фоновые блоки)

Номер фона	Фон	Характеристика фона
1	Ha _B ¹	Навоз (символ – Нав) внесли в 1-й ротации севооборота (40 т/га)
2	Изв ²	Известь (символ $-$ Изв) внесли по $1+2$ г.к. в 1 - и 2 -й ротациях севооборота
3	Нав ⁵ Сид	Навоз 40 т/га в 1-й ротации и по 60 т/гаво 2—5-й ротациях. В 6-й ротации в пар внесли сидерат (символ — Сид) горохоовсяной смеси 18 т/гa
4	Изв ² Нав ⁵ Сид	Известь внесли так же, как и на фоне 2. Навоз и сидерат применяли как на фоне 3.

Примечание. Символы те же в табл. 2-4.

Таблица 2. Изменение фактического содержания гумуса в почве в период прохождения 5-й ротации севооборота в зависимости от систем применения удобрения (среднее 2-х закладок опыта), %

Вариант	Без удобрений — Нав ¹			Известь — Изв ²			Навоз — Нав ⁵			Известь + + навоз – Изв ² Нав ⁵		
	1	2	<u>+</u>	1	2	<u>+</u>	1	2	<u>+</u>	1	2	+
1	1.92	2.18	0.26	1.95	2.15	0.20	2.34	2.40	0.06	2.23	2.37	0.14
5	2.07	2.03	-0.04	1.94	2.00	0.06	2.32	2.88	0.56	2.48	2.54	0.06
6	1.86	2.16	0.30	1.90	2.23	0.33	2.48	2.64	0.16	2.36	2.64	0.28
7	2.11	2.22	0.11	1.93	2.13	0.20	2.29	2.62	0.33	2.45	2.84	0.39
8	2.07	2.18	0.11	2.21	2.22	0.01	2.26	2.74	0.48	2.40	3.02	0.62
9	1.99	2.19	0.20	2.22	2.14	-0.08	2.37	2.52	0.15	2.40	2.75	0.35
10	1.99	2.01	0.02	2.24	2.04	-0.20	2.34	2.53	0.19	2.34	2.77	0.43
Cp.	2.00	2.14	0.14	2.06	2.13	0.07	2.34	2.62	0.19	2.38	2.70	0.32

Примечания. В графе 1- в начале ротации, 2- в конце ротации. То же в табл. 3. HCP_{05} фонов: 1-0.10, 2-0.27; HCP_{05} вариантов: 1-0.09, 2-0.20.

Ф.И. Левина [3], для вычисления количества сухого вещества пожнивных и корневых остатков, показали, что за 3 последние ротации севооборота поступило в почву сухого вещества культур севооборота: на фоне ${\rm Hab}^1{-}115$, ${\rm Изв}^2{-}120$, ${\rm Hab}^5{-}122$, ${\rm Изв}^2{\rm Hab}^5{-}127$ т/га (табл. 1).

Длительные наблюдения в ходе эксперимента свидетельствовали о значительном снижении содержания гумуса в почве, несмотря на существенное обогащение почвы органическим веществом. К концу 4-й ротации севооборота на фоне без внесения удобрений и на известкованном фоне его содержание снизилось до 1.96—1.92% от исходного 2.5%, т.е. за 32 года со времени закладки опыта — на 0.54 и 0.58% соответственно. Только за 4-ю ротацию содержание гумуса уменьшилось на 0.20 и 0.12 абс. %. Не обеспечивало поддержание запасов гумуса на исходном уровне и применение навоза, его среднее содержание на его фоне составило 2.38%, и на фоне известь + навоз —2.30%.

В 5-й ротации севооборота системы удобрения оказали положительное влияние на содержание гумуса в почве. Без внесения навоза содержание гумуса увеличилось в среднем в 7-ми вариантах на 0.14 абс. %

по сравнению с его показателями в конце 4-й ротации севооборота (табл. 2).

На известкованном фоне Изв² с полным внесением минеральных удобрений (NPK) отмечена лишь тенденция к повышению содержания гумуса (+0.07%). На этих фонах солома озимой ржи не стимулировала образование гумуса. Для сравнения в опыте был оставлен фон "известь + навоз", где в течение 2-х последних ротаций навоз не вносили (до этого его применяли в каждой ротации). На этом фоне содержание гумуса в 5-й ротации мало изменилось (в среднем — 2.43%) по сравнению с 4-й ротацией (2.38%). На тех фонах, на которых применяли навоз (Нав⁵ и Изв²Нав⁵), содержание гумуса увеличилось в среднем в 7-ми вариантах до 2.62 и 2.70% соответственно, что было больше исходного содержания на 0.12 и 0.20%.

В 6-й ротации севооборота системы удобрения оказали отрицательное воздействие на содержание гумуса в почве. Без внесения навоза его содержание уменьшилось в среднем на 0.16 абс. % от средней величины в 5-й ротации севооборота (табл. 3).

На известкованном фоне с внесением минеральных удобрений $(Изв^2)$ отмечена лишь тенденция

Таблица 3. Изменение фактического содержания гумуса в почве в период прохождения 6-й ротации севооборота в зависимости от систем применения удобрения (среднее 2-х закладок опыта), %

Вариант	Без удобрений – Нав ¹			Изв	Известь — Изв ²			Навоз — Нав ⁵ Сид			Известь + + навоз – Изв ² Нав ⁵ Сид		
	1	2	<u>+</u>	1	2	<u>+</u>	1	2	<u>+</u>	1	2	<u>+</u>	
1	2.18	1.77	-0.41	2.15	2.00	-0.15	2.40	2.12	-0.28	2.37	2.20	-0.17	
5	2.03	1.98	-0.05	2.00	2.27	0.27	2.88	2.20	-0.68	2.54	2.27	-0.27	
6	2.16	2.03	-0.13	2.23	2.34	0.11	2.64	2.39	-0.25	2.64	2.74	0.10	
7	2.22	2.03	-0.19	2.13	2.53	0.40	2.62	2.34	-0.28	2.84	2.50	-0.34	
8	2.18	1.98	-0.20	2.22	2.17	-0.05	2.74	2.44	-0.30	3.02	2.48	-0.54	
9	2.19	2.08	-0.11	2.14	2.00	-0.14	2.52	2.38	-0.14	2.75	2.38	-0.37	
10	2.01	2.00	-0.01	2.04	2.06	0.02	2.53	2.48	-0.05	2.77	2.20	-0.57	
Среднее	2.14	1.98	-0.16	2.13	2.20	0.07	2.62	2.34	-0.28	2.70	2.40	-0.30	

Примечание. HCP_{05} фонов: 1-0.27, 2-0.24. HCP_{05} вариантов: 1-0.20, 2-0.17.

Таблица 4. Влияние фонов и минеральных удобрений на содержание гумуса в почве в 6-й ротации севооборота (среднее 2-х закладок опыта),%

Вариант	На	nb1	И	3B ²	Нав	⁵ Сид	Изв ² Нав ⁵ Сид		
	1	2	1	2	1	2	1	2	
1	1,77	_	2,00	_	2,12	_	2,20	_	
5	1,98	0,21	2,27	0,27	2,20	0,08	2,27	0,07	
6	2,03	0,26	2,34	0,34	2,39	0,27	2,74	0,54	
7	2,03	0,26	2,53	0,53	2,34	0,22	2,50	0,30	
8	1,98	0,21	2,17	0,17	2,44	0,32	2,48	0,28	
9	2,08	0,31	2,00	0	2,38	0,26	2,38	0,18	
10	2,00	0,23	2,06	0,06	2,48	0,36	2,20	0	
Сред.	1,98	_	2,20	_	2,34	_	2,40	_	
Прибавка –			0,22		0,36		0,42		

Примечания. В графе 1 — содержание гумуса, 2 — прибавка к контролю. HCP_{05} фонов — 0.24, HCP_{05} вариантов — 0.17.

к увеличению его содержания (+0.07%). На этих фонах солома озимой ржи без внесения других органических удобрений, так же как и в 5-й ротации севооборота, не стимулировала образование гумуса. Для нормального процесса гумификации следует увеличить дозу или периодичность внесения в почву органических удобрений. На фонах с применением горохоовсяного сидерата (Нав 5 Сид, Изв 2 Нав 5 Сид) в течение ротации шла активная минерализация органического вещества, для которых определение биологической активности почвы методом аппликаций показало увеличение разложения хлопчатобумажной ткани с 16.8 до 25.8% при $HCP_{05} = 6.2\%$. Это привело к снижению содержания гумуса на 0.28 и 0.30 абс. % по сравнению с 5-й ротацией.

Минеральные удобрения на фоне общего снижения содержания гумуса в 6-й ротации повышали его количество по отношению к варианту без удобрений. На унавоженных фонах с применением сидерата (Нав⁵Сид и Изв²Нав⁵Сид)и соломы озимой ржи

наблюдали наибольшее достоверное увеличение содержания гумуса в почве. По сравнению с безнавозным фоном ${\rm Has}^1$, но с использованием соломы, оно возросло на 0.36 и 0.42% при HCP_{05} для фоновравном 0.24% (табл. 4).

ВЫВОДЫ

- 1. Систематическое использование навоза (в каждой ротации по 60 т/га) и соломы озимой ржи (по 2 раза за последние 4 ротации севооборота) обеспечило достижение с небольшим превышением (на 0.12-0.20%) уровня исходного содержания гумуса в почве (2.5%).
- 2. Использование сидерата горохоовсяной смеси усилило минерализацию органического вещества в почве, вследствие чего содержание гумуса снизилось до 2.34—2.40%, что было меньше исходного его содержания на 0.10—0.16 абс. %.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ковриго В.П.* Почвы Удмуртской Республики: монография. Ижевск: РИО Ижевская ГСХА, 2004. 490 с.
- 2. *Сычев В.Г., Шафран С.А.* Агрохимические свойства почв и эффективность минеральных удобрений. М.: ВНИИА, 2013. 296 с.
- Иванова Р.С. Сравнительная эффективность различных систем удобрения в севооборотах на дерновоподзолистой суглинистой почве // Агрохимия. 1988. № 11. С. 33—36.
- Никитишен В.И., Неретин Г.И., Никитишена А.И. Эффективность удобрений и баланс питательных веществ в полевых севооборотах на серой лесной почве // Агрохимия. 1981. № 3. С. 23—33.
- 5. *Холзаков В.М.* Повышение продуктивности дерновоподзолистых почв в Среднем Предуралье. Автореф. дис. ... д-ра с.-х. наук. Тюмень, 2004. 32 с.
- 6. Попова С.И., Прокошев В.Н. Влияние длительного применения удобрений на продуктивность и свойства дерново-подзолистых почв // Итоги работы Геосети опытов с удобрениями и пути повышения эффективности применения удобрений в Нечерноземной зоне: Тез. докл. рег. совещ. М., 1977. С. 10—11.
- 7. Попова С.И., Зиганьшина Ф.М., Тараканова Н.Я. Действие удобрений при длительном их применении на урожай полевых культур и агрохимические свойства дерново-подзолистой почвы // Влияние длительного

- применения удобрений на плодородие почвы и продуктивность севооборотов: науч. тр. ВАСХНИЛ. М.: Колос, 1980. С. 140—159.
- 8. Тараканова Н.Я. Влияние удобрений при длительном их применении на агрохимические свойства дерновоподзолистой почвы и урожай полевых культур // Вопросы химизации земледелия: Сб. научн. тр. Перм. ГСХА. Т. 3. Пермь: Перм. кн. изд-во, 1974. С. 16—33.
- 9. Башков А.С. Агрохимические основы повышения эффективности систем удобрений полевых культур на дерново-подзолистых почвах Среднего Предуралья. Автореф. дис. ... д-ра с.-х. наук. Пермь, 2000. 66 с.
- 10. *Милащенко Н.З.* Плодородие почв, удобрения и производство зерна // Вестн. РАСХН. 2001. № 2. С. 14—18.
- 11. *Сычев В.Г., Минеев В.Г., Романенков В.А.* Бюл. Географ. сети опытов с удобрениями. Вып. 1. М.: ВНИИА, 2006. 48 с.
- 12. *Новиков М.И., Тамонов А.М., Фролова Л.Д., Ерма-кова Л.И.* Сидераты в земледелии Нечерноземной зоны // Агрохим. вестн. 2013. № 4. С. 20—26.
- Матюк Н.С., Селицкая О.В., Солдатова С.С. Роль сидератов и соломы в стабилизации процессов трансформации органического вещества в дерново-подзолистой почве // Изв. ТСХА. 2013. Вып. 3. С. 63—74.
- 14. *Левин Ф.И*. Окультуривание подзолистых почв. М.: Колос, 1972. 264 с.

Effect of Sideral Fertilizer on the Content of Humus in the Soil A. G. Dzyuin*

Udmurt Federal Research Center of the Ural Branch of the RAS, ul. Lenina 1, Zavyalovsky district, d. Pervomaisky, Izhevsk 427007, Russia *E-mail: sanya.dzyuin@yandex.ru

In a long-term experiment, which was laid down in 1971, in 2 bookmarks with an interval of one year, the effect of sideral fertilizer on the humus content in the soil during 6 rotations of an 8-field crop rotation was studied. The soil is sod-medium-podzolic medium loam on a cover red-brown heavy loam with agrochemical indicators of the arable layer before the experiment was laid: pH_{KCl} 5.0, A_h – 2.7, S – 14.8 mmol/100 g, V – 85.2%, the content of P_2O_5-52 , K_2O-98 mg/kg of soil. In the 6th rotation, instead of manure, a sideral fertilizer – a pea—oat mixture (18 t/ha) was used as an organic fertilizer. In the experiment, the levels of application of mineral fertilizers on different backgrounds were studied using lime (1 + 2 h.a.) in the 1st and 2nd rotations of crop rotation), manure (40 t/ha in the 1st and 60 t/ha in the 2nd and 5th rotations), siderate (in the 6th rotations) and without them. Options with fertilizers: 1 – without fertilizers, 5 – N10P10K10, 6 – N20P20K20, 7 – N30P30K30, 8 – N40P40K40, 9 – N50P50K50, 10 – N60P60K60. For 4 rotations of crop rotation (32 years) without applying background fertilizers, the humus content decreased from 2.5 to 1.96–1.92% (by 0.54 and 0.58 abs.%), against the background of manure – up to 2.38%, lime + manure – up to 2.30%. In the 5th rotation on the backgrounds with the introduction of manure, its content on average in 7 variants increased to 2.62 and 2.70%, which was higher than the initial (2.50%) by 0.12 and 0.20 abs.%. In the 6th rotation, the use of pea-oat mixture as a siderate led to a decrease in the level of humus content by 0.28–0.30 abs.% is reduced by periodic use of manure (once in each rotation) and winter rye straw (2 times in 3–6 rotations).

Keywords: crop rotation, fertilizer system, siderate, organic matter, humus.