Combined Effect of Manganese, Copper, and Zinc Nanoparticles on the Growth Processes and Photosynthetic Parameters of Barley Plants Under Conditions of Insufficient Moisture

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of manganese, copper, and zinc nanoparticles on the development and productivity of spring barley plants was studied when modeling water scarcity in the tillering and earing phases as one of the limiting environmental factors. A preliminary selection of optimal concentrations of nanoparticles for pre-sowing seed treatment was studied on leaded seedlings. The cultivation of the plant to the phase of waxy ripeness of grain and the experiment with drought were carried out in a closed system with a controlled microclimate. The crop structure, plant height, root system length, and photosynthetic pigment content were determined. It was shown that at the germination stage, the effect depended on the concentrations of metal nanoparticles, and the selected concentration increased the quantitative parameters of the seedlings during processing. The sensitivity of barley to different types of drought was different, and maximum productivity losses were noted when there was a lack of water during the tillering period. Nanoparticle composition treatment enhanced adaptation to stress and improved photosynthesis parameters. Thus, the use of the selected nanoparticle composition can potentially increase productivity under stressful conditions and is recommended for further production tests in the field.

作者简介

A. Novikova

Federal Research Centre of Biological Systems and Agrotechnologies of the RAS

prosp. Gagarina 27/1, Orenburg 460051, Russia

E. Podlasova

Federal Research Centre of Biological Systems and Agrotechnologies of the RAS

Email: katerina.pryakhina@mail.ru
prosp. Gagarina 27/1, Orenburg 460051, Russia

N. Glushchenko

N.N. Semenov Federal Research Center for Chemical Physics RAS

ul. Kosygina 4, bld. 1, Moscow 119334, Russia

参考

  1. Shahid M.A., Sarkhosh A., Khan N.A., Balal R.M., Ali S., Rossi L., Gómez C., Mattson N., Nasim W., Garcia-Sanchez F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development // Agronomy. 2020. V. 10. № 7. P. 938.
  2. Alabdallah N.M., Hasan M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants // Saudi J. Biol. Sci. 2021. № 28. Р. 5631–5639.
  3. Hasan M.M., Gong L., Nie Z.-F., Li F.-P., Ahammed G.J., Fang X.-W. ABA-induced stomatal movements in vascular plants during dehydration and rehydration // Environ. Exp. Bot. 2021. № 186. Р. 104436.
  4. Yasur J., Rani P.U. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology // Environ. Sci. Pollut. Res. 2013. № 20. Р. 8636–8648.
  5. Wang H., Kou X., Pei Z., Xiao J.Q., Shan X., Xing B. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants // Nanotoxicology. 2011. № 5. Р. 30–42.
  6. Nair P.M.G., Chung I.M. Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure // J. Plant Growth Regul. 2015. № 34. Р. 350–361.
  7. Hassan M.U., Aamer M., Chattha M.U., Haiying T., Shahzad B., Barbanti L., Nawaz M., Rasheed A., Afzal A., Liu Y., Guoqin H. The critical role of zinc in plants facing the drought stress // Agriculture. 2020. № 10. Р. 396.
  8. Abd El-Mageed T.A., Shaaban A., Abd El-Mageed S.A., Semida W.M., Rady M.O. Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water // Silicon. 2021. № 13. Р. 2165–2176.
  9. Dimkpa C.O., Singh U., Bindraban P.S., Elmer W.H., Gardea-Torresdey J.L., White J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification // Sci. Total Environ. 2019. № 688. Р. 926–934.
  10. Gruszecki W.I., Strzałka K. Carotenoids as modulators of lipid membrane physical properties // Вiochimica et biophysica acta - molecular basis of disease. 2005. V. 1740. Р. 108–115.
  11. López-Moreno M.L., de la Rosa G., Hernández-Viezcas J.Á., Castillo-Michel H., Botez C.E., Peralta-Videa J.R., Gardea-Torresdey J.L. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants // Environ. Sci. Technol. 2010. № 44. Р. 7315–7320.
  12. Semida W.M., Abdelkhalik A., Mohamed G.F., Abd El-Mageed T.A., Abd El-Mageed S.A., Rady M.M., Ali E. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.) // Plants. 2021. № 10. Р. 421.
  13. Миллер А.В., Ген М.Я. Способ получения аэрозолей металлов. А.с. 814432 (СССР) // Б.И. 1981. № 11. С. 25–28.
  14. Leipunsky I.O., Zhigach A.N., Kuskov M.L., Berezkina N.G., Afanasenkova E.S., Kudrov B.V., Lopez G.W., Vorobjeva G.A., Naumkin A.V. Synthesis of TiH2 nanopowder via the Guen-Miller Flow-Levitation method and characterization // J. Alloys Compounds. 2019. № 778. Р. 271–279.
  15. Смашевский Н.Д. Практикум по физиологии растений: учеб. пособ. Астрахань: Изд. дом “Астраханский университет”, 2011. С. 77.
  16. Wang H., Kou X., Pei Z., Xiao J.Q., Shan X., Xing B. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants // Nanotoxicology. 2011. № 5. P. 30–42.
  17. Ranjan A., Rajput V.D., Minkina T., Bauer T., Chauhan A., Jindal T. Nanoparticles induced stress and toxicity in plants // Environ. Nanotechnol. Monit. Manag. 2021. № 15. P. 100457.
  18. Churilov D.G., Polishchuk S.D., Shemyakin A.V., Churilova V.V., Ivanycheva Y.N. Dose-Dependent biological effects in iron, copper, and cobalt nanoparticles on vetch and spring-wheat plants // Nanobiotechnol. Rep. 2023. V. 18. № 3. P. 419–428.
  19. Elbanna H.M., Ahmed O.K., Fayed S.A., Hammam K.A., Yousef R.S. Enhancing french basil growth through synergistic Foliar treatment with copper nanoparticles and Spirulina sp. // BMC Plant Biol. 2024. V. 24. № 1. P. 512.
  20. Lu L., Huang M., Huang Y., Corvini P.F.-X., Ji R., Zhao L. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress // Environ. Sci. Nano. 2020. № 7. P. 1692–1703.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».