Forcing Formulas in Fraïssé Structures and Classes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We come up with a semantic method of forcing formulas by finite structures in an arbitrary fixed Fraïssé class . Both known and some new necessary and sufficient conditions are derived under which a given structure will be a forcing structure. A formula φ is forced on \( \overline{a} \) in an infinite structure ╟φ\( \left(\overline{a}\right) \) if it is forced in by some finite substructure of . It is proved that every ∃∀∃-sentence true in a forcing structure is also true in any existentially closed companion of the structure. The new concept of a forcing type plays an important role in studying forcing models. It is proved that an arbitrary structure will be a forcing structure iff all existential types realized in the structure are forcing types. It turns out that an existentially closed structure which is simple over a tuple realizing a forcing type will itself be a forcing structure. Moreover, every forcing type is realized in an existentially closed structure that is a model of a complete theory of its forcing companion.

Авторлар туралы

A. Nurtazin

Institute of Information and Computational Technologies, Ministry of Education and Science RK

Хат алмасуға жауапты Автор.
Email: abyznurtazin@mail.ru
Қазақстан, ul. Pushkina 125, Alma-Ata, 050010

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018