Structure of Quasivariety Lattices. I. Independent Axiomatizability
- Авторы: Kravchenko A.V.1,2,3,4, Nurakunov A.M.5, Schwidefsky M.V.1,2
-
Учреждения:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Siberian Institute of Management
- Novosibirsk State Technical University
- Institute of Mathematics, National Academy of Science of the Kyrgyz Republic
- Выпуск: Том 57, № 6 (2019)
- Страницы: 445-462
- Раздел: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234111
- DOI: https://doi.org/10.1007/s10469-019-09516-4
- ID: 234111
Цитировать
Аннотация
We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.
Ключевые слова
Об авторах
A. Kravchenko
Sobolev Institute of Mathematics; Novosibirsk State University; Siberian Institute of Management; Novosibirsk State Technical University
Автор, ответственный за переписку.
Email: a.v.kravchenko@mail.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090; ul. Nizhegorodskaya 6, Novosibirsk, 630102; pr. Marksa 20, Novosibirsk, 630073
A. Nurakunov
Institute of Mathematics, National Academy of Science of the Kyrgyz Republic
Email: a.v.kravchenko@mail.ru
Киргизия, pr. Chui 265a, Bishkek, 720071
M. Schwidefsky
Sobolev Institute of Mathematics; Novosibirsk State University
Email: a.v.kravchenko@mail.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Дополнительные файлы
