A Probabilistic Algorithm for Calculating Similarities


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we describe a new probabilistic algorithm for calculating hypotheses as the results of similarities between training examples for a machine learning problem based on a binary similarity operation. Unlike previously proposed probabilistic algorithms, the order of accounting for training examples is fixed for all hypotheses. This algorithm is useful for implementation using a GPGPU. The main result of this paper is the independence of the order of the appearance of training examples of the probabilities of each similarity in the sample.

Sobre autores

D. Vinogradov

Federal Research Center Computer Science and Control, Russian Academy of Sciences; Russian State University for the Humanities

Autor responsável pela correspondência
Email: vinogradov.d.w@gmail.com
Rússia, Moscow, 119333; Moscow, 125993

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019