Boundary value problems for a nonstrictly hyperbolic equation of the third order


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study classical solutions of boundary value problems for a nonstrictly hyperbolic third-order equation. The equation is posed in a half-strip and a quadrant of the plane of two independent variables. The Cauchy conditions are posed on the lower boundary of the domain, and the Dirichlet conditions are posed on the lateral boundaries. By using the method of characteristics, we find the analytic form of the solution of considered problems. The uniqueness of the solutions is proved.

About the authors

V. I. Korzyuk

Belarusian State University

Author for correspondence.
Email: korzyuk@bsu.by
Belarus, Minsk

A. A. Mandrik

Belarusian State University

Email: korzyuk@bsu.by
Belarus, Minsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.