Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A uniform, on ℝ, estimate for the increment of the spectral function θ(λ; x, y) at x = y is proved for the self-adjoint Schrödinger operator A defined on the entire axis ℝ by the differential operation (−d/dx)2 + q(x) with a potential-distribution q(x) that uniformly locally belongs to the space W2−1. As a consequence, it is shown that for any function f(x) from the domain of power Aα of the operator with α > 1/4, the spectral expansion of the function that corresponds to the operator A is convergent absolutely and uniformly on the entire axis ℝ.

作者简介

L. Kritskov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kritskov@cs.msu.ru
俄罗斯联邦, Moscow, 119992

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017