Estimates of Riesz Constants for the Dirac System with an Integrable Potential
- 作者: Savchuk A.M.1, Sadovnichaya I.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 54, 编号 6 (2018)
- 页面: 748-757
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154771
- DOI: https://doi.org/10.1134/S0012266118060046
- ID: 154771
如何引用文章
详细
We consider the Dirac operator on the interval [0, π] with an integrable potential P = (pij (x))i,j=12 and strongly regular boundary conditions U. It is well known that for any integrable potential P the system {yn}n∈Z of root functions of the strongly regular operator LP,U is a Riesz basis in the space H = L2[0, π] × L2[0, π]. We obtain estimates, uniform on every compact set of potentials, of the Riesz constants ||T||||T−1||, where T is the operator of transition to an orthonormal basis.
作者简介
A. Savchuk
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: artem_savchuk@mail.ru
俄罗斯联邦, Moscow, 119991
I. Sadovnichaya
Lomonosov Moscow State University
Email: artem_savchuk@mail.ru
俄罗斯联邦, Moscow, 119991
补充文件
