Oscillation Properties of Higher-Order Sublinear Differential Equations
- Authors: Kiguradze I.T.1, Kiguradze T.I.2
-
Affiliations:
- A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
- Florida Institute of Technology
- Issue: Vol 54, No 12 (2018)
- Pages: 1545-1559
- Section: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154888
- DOI: https://doi.org/10.1134/S0012266118120029
- ID: 154888
Cite item
Abstract
For higher-order sublinear nonautonomous ordinary differential equations, necessary and sufficient conditions for the existence of properties A and B are obtained. In particular, we prove that if n is even, a > 0, and the function p : [a, +∞) → (−∞, 0] is Lebesgue integrable on each finite interval, then, for the oscillation property of all proper solutions of the differential equation u(n) = p(t) ln(1+|u|) sgn(u), it is necessary and sufficient that \(\int_{a}^{+\infty}p(t)\rm{ln} \it{t} dt=-\infty\).
About the authors
I. T. Kiguradze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
Author for correspondence.
Email: ivane.kiguradze@tsu.ge
Georgia, Tbilisi, 0177
T. I. Kiguradze
Florida Institute of Technology
Email: ivane.kiguradze@tsu.ge
United States, Melbourne, FL, 32901
Supplementary files
