Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇D(x1,x2)∇ defined in a domain Ω ? R 2 with coefficient D(x) degenerating on the boundary Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian D(x)p2 and degenerating on Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where D(x) = 0, although their projections onto the plane R2 are compact sets, as a rule, diffeomorphic to annuli in R2. We refer to such systems as billiards with semi-rigid walls.

作者简介

A. Anikin

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: anikin83@inbox.ru
俄罗斯联邦, Moscow, 119526; Dolgoprudnyi, Moscow oblast, 141700

S. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: dobr@ipmnet.ru
俄罗斯联邦, Moscow, 119526; Dolgoprudnyi, Moscow oblast, 141700

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: nazaikinskii@yandex.ru
俄罗斯联邦, Moscow, 119526; Dolgoprudnyi, Moscow oblast, 141700

A. Tsvetkova

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: annatsvetkova25@gmail.com
俄罗斯联邦, Moscow, 119526; Dolgoprudnyi, Moscow oblast, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019