Strong solutions of periodic parabolic problems with discontinuous nonlinearities
- Авторлар: Pavlenko V.N.1
-
Мекемелер:
- Chelyabinsk State University
- Шығарылым: Том 52, № 4 (2016)
- Беттер: 505-516
- Бөлім: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/153772
- DOI: https://doi.org/10.1134/S0012266116040108
- ID: 153772
Дәйексөз келтіру
Аннотация
We study the problem of finding time-periodic solutions of a parabolic equation with the homogeneous Dirichlet boundary condition and with a discontinuous nonlinearity. We assume that the nonlinearity is equal to the difference of two superpositionally measurable functions nondecreasing with respect to the state variable. For such a problem, we prove the principle of lower and upper solutions for the existence of strong solutions without additional constraints on the “jumping-up” discontinuities in the nonlinearity. We obtain existence theorems for strong solutions of this class of problems, including theorems on the existence of two nontrivial solutions.
Негізгі сөздер
Авторлар туралы
V. Pavlenko
Chelyabinsk State University
Хат алмасуға жауапты Автор.
Email: pavlenko@csu.ru
Ресей, Chelyabinsk
Қосымша файлдар
