On Some Properties of Topological Entropy and Topological Pressure of Families of Dynamical Systems Continuously Depending on a Parameter
- Авторлар: Vetokhin A.N.1,2
-
Мекемелер:
- Lomonosov Moscow State University
- Bauman Moscow State Technical University
- Шығарылым: Том 55, № 10 (2019)
- Беттер: 1275-1283
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155151
- DOI: https://doi.org/10.1134/S0012266119100021
- ID: 155151
Дәйексөз келтіру
Аннотация
For each everywhere dense subset \({\cal G}\) of type Gδ in a complete metric separable zero-dimensional space, we construct a family of dynamical systems continuously depending on a parameter varying in this space such that the set of points of lower semicontinuity of the topological entropy of its systems treated as a function of the parameter coincides with the set \({\cal G}\). For a family of dynamical systems continuously depending on the parameter, we prove that the set of points of lower semicontinuity and the set of points of upper semicontinuity of the topological pressure of its systems treated as a function of the parameter are sets of type Gδ and Fσδ, respectively.
Авторлар туралы
A. Vetokhin
Lomonosov Moscow State University; Bauman Moscow State Technical University
Хат алмасуға жауапты Автор.
Email: anveto27@yandex.ru
Ресей, Moscow, 119991; Moscow, 105005
Қосымша файлдар
