Gellerstedt problem with a generalized Frankl matching condition on the type change line with data on external characteristics
- 作者: Moiseev T.E.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 52, 编号 2 (2016)
- 页面: 240-247
- 栏目: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/153667
- DOI: https://doi.org/10.1134/S0012266116020099
- ID: 153667
如何引用文章
详细
We study the solvability of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation with nonclassical matching conditions for the gradient of the solution (in the sense of Frankl) on the type change line of the equation. We prove that the inhomogeneous Gellerstedt problem with data on the external characteristics of the equation is solvable either uniquely or modulo a nontrivial solution of the homogeneous problem. We obtain integral representations of the solution of the problem in both the elliptic and the hyperbolic parts of the domain. The solution proves to be regular.
作者简介
T. Moiseev
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow
补充文件
