Gellerstedt problem with a generalized Frankl matching condition on the type change line with data on external characteristics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the solvability of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation with nonclassical matching conditions for the gradient of the solution (in the sense of Frankl) on the type change line of the equation. We prove that the inhomogeneous Gellerstedt problem with data on the external characteristics of the equation is solvable either uniquely or modulo a nontrivial solution of the homogeneous problem. We obtain integral representations of the solution of the problem in both the elliptic and the hyperbolic parts of the domain. The solution proves to be regular.

作者简介

T. Moiseev

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016