Solvability problems for a linear homogeneous functional-differential equation of the pointwise type
- Авторлар: Beklaryan L.A.1,2, Beklaryan A.L.3
-
Мекемелер:
- Central Economics and Mathematics Institute
- Peoples Friendship University of Russia
- National Research University “Higher School of Economics”
- Шығарылым: Том 53, № 2 (2017)
- Беттер: 145-156
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154260
- DOI: https://doi.org/10.1134/S001226611702001X
- ID: 154260
Дәйексөз келтіру
Аннотация
The Cauchy problem for a linear homogeneous functional-differential equation of the pointwise type defined on a straight line is considered. Theorems on the existence and uniqueness of the solution in the class of functions with a given growth are formulated for the case of the one-dimensional equation. The study is performed using the group peculiarities of these equations and is based on the description of spectral properties of an operator that is induced by the right-hand side of the equation and acts in the scale of spaces of infinite sequences.
Авторлар туралы
L. Beklaryan
Central Economics and Mathematics Institute; Peoples Friendship University of Russia
Хат алмасуға жауапты Автор.
Email: beklar@cemi.rssi.ru
Ресей, Moscow, 117418; Moscow, 117198
A. Beklaryan
National Research University “Higher School of Economics”
Email: beklar@cemi.rssi.ru
Ресей, Moscow, 101978
Қосымша файлдар
