Information Meaning of Entropy of Nonergodic Measures


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The limit frequency properties of trajectories of the simplest dynamical system generated by the left shift on the space of sequences of letters from a finite alphabet are studied. The following modification of the Shannon-McMillan-Breiman theorem is proved: for any invariant (not necessarily ergodic) probability measure μ on the sequence space, the logarithm of the cardinality of the set of all μ-typical sequences of length n is equivalent to nh(μ), where h(μ) is the entropy of the measure μ. Here a typical finite sequence of letters is understood as a sequence such that the empirical measure generated by it is close to μ (in the weak topology).

Sobre autores

V. Bakhtin

John Paul II Catholic University of Lublin; Belarusian State University

Autor responsável pela correspondência
Email: bakhtin@tut.by
Polônia, Lublin, 20-950; Minsk, 220030

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019