Quadratic functionals and nondegeneracy of boundary value problems on a geometric graph
- Авторы: Zavgorodnij M.G.1
-
Учреждения:
- Voronezh State University
- Выпуск: Том 52, № 1 (2016)
- Страницы: 18-27
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/153600
- DOI: https://doi.org/10.1134/S001226611601002X
- ID: 153600
Цитировать
Аннотация
Quadratic functionals defined on the space of functions differentiable on a geometric graph are considered. Analogs of the Lagrange and Dubois–Raymond lemmas are proved. Necessary extremum conditions for these quadratic functionals are obtained. A boundary value problem with conditions posed locally at the vertices of a geometric graph is shown to be selfadjoint if and only if it is generated by a quadratic functional. A subclass of quadratic energy functionals is singled out. The space of solutions of the homogeneous boundary value problem generated by a quadratic energy functional is described, and nondegeneracy criteria for such boundary value problems are derived.
Ключевые слова
Об авторах
M. Zavgorodnij
Voronezh State University
Автор, ответственный за переписку.
Email: zavgorodnijm@yandex.ru
Россия, Voronezh
Дополнительные файлы
