Quadratic functionals and nondegeneracy of boundary value problems on a geometric graph


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Quadratic functionals defined on the space of functions differentiable on a geometric graph are considered. Analogs of the Lagrange and Dubois–Raymond lemmas are proved. Necessary extremum conditions for these quadratic functionals are obtained. A boundary value problem with conditions posed locally at the vertices of a geometric graph is shown to be selfadjoint if and only if it is generated by a quadratic functional. A subclass of quadratic energy functionals is singled out. The space of solutions of the homogeneous boundary value problem generated by a quadratic energy functional is described, and nondegeneracy criteria for such boundary value problems are derived.

Об авторах

M. Zavgorodnij

Voronezh State University

Автор, ответственный за переписку.
Email: zavgorodnijm@yandex.ru
Россия, Voronezh

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).