On the baire classification of Sergeev frequencies of zeros and roots of solutions of linear differential equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We show that the upper and lower characteristic frequencies of zeros and the upper frequency of roots of a solution of a linear differential equation treated as functions on the direct product of the space of equations with the compact-open topology by the space of initial vectors of solutions belong to the third Baire class and that the lower characteristic frequency of roots belongs to the second Baire class. As a corollary, we show that the ranges of the considered frequencies on the solutions of a given equation are Suslin (analytic) sets. In addition, we prove the Lebesgue measurability and the Baire property of the extreme characteristic frequencies of zeros and roots of an equation treated as functions of a real parameter on which the coefficients of the equation depend continuously.

Об авторах

V. Bykov

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: vvbykov@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).