Hybridized schemes of the discontinuous Galerkin method for stationary convection–diffusion problems
- Авторы: Dautov R.Z.1, Fedotov E.M.1
-
Учреждения:
- Kazan Federal University
- Выпуск: Том 52, № 7 (2016)
- Страницы: 906-925
- Раздел: Numerical Methods
- URL: https://journal-vniispk.ru/0012-2661/article/view/153926
- DOI: https://doi.org/10.1134/S0012266116070107
- ID: 153926
Цитировать
Аннотация
For stationary linear convection–diffusion problems, we construct and study a new hybridized scheme of the discontinuous Galerkin method on the basis of an extended mixed statement of the problem. Discrete schemes can be used for the solution of equations degenerating in the leading part and are stated via approximations to the solution of the problem, its gradient, the flow, and the restriction of the solution to the boundaries of elements. For the spaces of finite elements, we represent minimal conditions responsible for the solvability, stability, accuracy, and superconvergence of the schemes. A new procedure for the post-processing of solutions of HDG-schemes is suggested.
Об авторах
R. Dautov
Kazan Federal University
Автор, ответственный за переписку.
Email: Rafail.Dautov@kpfu.ru
Россия, Kazan
E. Fedotov
Kazan Federal University
Email: Rafail.Dautov@kpfu.ru
Россия, Kazan
Дополнительные файлы
