Nonlinear spectral problem for a self-adjoint vector differential equation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider a spectral problem that is nonlinear in the spectral parameter for a self-adjoint vector differential equation of order 2n. The boundary conditions depend on the spectral parameter and are self-adjoint as well. Under some conditions of monotonicity of the input data with respect to the spectral parameter, we present a method for counting the eigenvalues of the problem in a given interval. If the boundary conditions are independent of the spectral parameter, then we define the notion of number of an eigenvalue and give a method for computing this number as well as the set of numbers of all eigenvalues in a given interval. For an equation considered on an unbounded interval, under some additional assumptions, we present a method for approximating the original singular problem by a problem on a finite interval.

Об авторах

A. Abramov

Dorodnitsyn Computing Center of the Russian Academy of Sciences; Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: alalabr@ccas.ru
Россия, Moscow, 119333; Moscow, 125047

L. Yukhno

Dorodnitsyn Computing Center of the Russian Academy of Sciences; Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: alalabr@ccas.ru
Россия, Moscow, 119333; Moscow, 125047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).