Directional Derivative Problem for the Telegraph Equation with a Dirac Potential


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In the domain Q = [0,∞)×[0,∞) of the variables (x, t), for the telegraph equation with a Dirac potential concentrated at a point (x0, t0) ∈ Q, we consider a mixed problem with initial (at t = 0) conditions on the solution and its derivative with respect to t and a condition on the boundary x = 0 which is a linear combination with coefficients depending on t of the solution and its first derivatives with respect to x and t (a directional derivative). We obtain formulas for the classical solution of this problem under certain conditions on the point (x0, t0), the coefficient of the Dirac potential, and the conditions of consistency of the initial and boundary data and the right-hand side of the equation at the point (0, 0). We study the behavior of the solution as the direction of the directional derivative in the boundary condition tends to a characteristic of the equation and obtain estimates of the difference between the corresponding solutions.

Об авторах

S. Baranovskaya

Belarusian State University

Автор, ответственный за переписку.
Email: bramka@mail.ru
Белоруссия, Minsk, 220030

E. Novikov

Belarusian State University

Email: bramka@mail.ru
Белоруссия, Minsk, 220030

N. Yurchuk

Belarusian State University

Email: bramka@mail.ru
Белоруссия, Minsk, 220030

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).