Method for Finding Periodic Trajectories of Centrally Symmetric Dynamical Systems on the Plane


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The problem of finding the cycles of a dynamical system on the plane is considered under the assumption that the system is centrally symmetric. We suggest an iteration method where, at each step, the function describing an approximation of a periodic trajectory is determined as a trajectory of some Hamiltonian system. If the resulting function sequence converges, then the limit is a periodic trajectory of the exact system. The efficiency of the method is illustrated by examples of seeking the cycles in the classical problems on the van der Pol oscillator and the perturbed Duffing oscillator for the case in which the coefficient of nonconservative terms takes values of the order of unity.

Об авторах

L. Klimina

Institute of Mechanics

Автор, ответственный за переписку.
Email: klimina@imec.msu.ru
Россия, Moscow, 119192

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).