Homogenization of a Boundary Value Problem for the n-Laplace Operator on a n-Dimensional Domain with Rapidly Alternating Boundary Condition Type: The Critical Case
- Авторы: Podolskiy A.V.1, Shaposhnikova T.A.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 55, № 4 (2019)
- Страницы: 523-531
- Раздел: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154998
- DOI: https://doi.org/10.1134/S0012266119040104
- ID: 154998
Цитировать
Аннотация
We study the asymptotic behavior of the solution of a boundary value problem for the p-Laplace operator with rapidly alternating nonlinear boundary conditions posed on ε-periodically arranged subsets on the boundary of a domain Ω ⊂ ℝn. We assume that p = n, construct a homogenized problem, and prove the weak convergence as ε → 0 of the solution of the original problem to the solution of the homogenized problem in the so-called critical case, which is characterized by the fact that the homogenization changes the character of nonlinearity of the boundary condition.
Об авторах
A. Podolskiy
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: AVPodolskiy@yandex.ru
Россия, Moscow, 119991
T. Shaposhnikova
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: shaposh.tan@mail.ru
Россия, Moscow, 119991
Дополнительные файлы
