Initial-Boundary Value Problem for the Beam Vibration Equation in the Multidimensional Case


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the multidimensional case, we study the problem with initial and boundary conditions for the equation of vibrations of a beam with one end clamped and the other hinged. An existence and uniqueness theorem is proved for the posed problem in Sobolev classes. A solution of the problem under consideration is constructed as the sum of a series in the system of eigenfunctions of a multidimensional spectral problem for which the eigenvalues are determined as the roots of a transcendental equation and the system of eigenfunctions is constructed. It is shown that this system of eigenfunctions is complete and forms a Riesz basis in Sobolev spaces. Based on the completeness of the system of eigenfunctions, a theorem about the uniqueness of a solution to the posed initial-boundary value problem is stated.

Авторлар туралы

Sh. Kasimov

Mirzo Ulugbek National University of Uzbekistan

Хат алмасуға жауапты Автор.
Email: shokiraka@mail.ru
Өзбекстан, Tashkent, 100174

U. Madrakhimov

Mirzo Ulugbek National University of Uzbekistan

Хат алмасуға жауапты Автор.
Email: umadraximov@mail.ru
Өзбекстан, Tashkent, 100174

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019