Generalized Transmission Problem for Two-Dimensional Filtration Flows in an Anisotropic Inhomogeneous Layer


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We state and study a transmission boundary value problem for two-dimensional filtration flows in a piecewise anisotropic inhomogeneous layer of a porous medium. The layer is characterized by a generally nonsymmetric conductivity (permeability) tensor with components that undergo discontinuity on some smooth curve (the transmission line). The tensor components are modeled by a function of the coordinates that undergoes a discontinuity on the transmission line but is continuously differentiable outside of it. We consider a layer with separated anisotropy and inhomogeneity. Using a nonsingular affine transformation of the coordinates, we state the problem for a complex potential in canonical form, which considerably simplifies the analysis of the problem. The sources–sinks of the flow are set arbitrarily; they do not lie on the transmission line and are modeled by the singular points of the complex potential. The problem is reduced to a system of two singular integral equations if the discontinuity in the layer conductivity along the transmission line is variable and to one singular integral equation if the discontinuity is constant. The problem is of practical interest, for example, in extracting water (or oil) from natural piecewise anisotropic inhomogeneous layers (strata) of soil.

Об авторах

V. Piven’

Turgenev Orel State University

Автор, ответственный за переписку.
Email: PivenVF@gmail.com
Россия, Orel, 302026

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).