On the role of conservation laws and input data in the generation of peaking modes in quasilinear multidimensional parabolic equations with nonlinear source and in their approximations
- Авторлар: Matus P.P.1,2,3, Churbanova N.G.1,2,3, Shchadinskii D.A.1,2,3
-
Мекемелер:
- Institute of Mathematics
- The John Paul II Catholic University of Lublin
- Keldysh Institute of Applied Mathematics
- Шығарылым: Том 52, № 7 (2016)
- Беттер: 942-950
- Бөлім: Numerical Methods
- URL: https://journal-vniispk.ru/0012-2661/article/view/153936
- DOI: https://doi.org/10.1134/S0012266116070120
- ID: 153936
Дәйексөз келтіру
Аннотация
We study unbounded solutions of a broad class of initial–boundary value problems for multidimensional quasilinear parabolic equations with a nonlinear source. By using a conservation law, we obtain conditions imposed solely on the input data and ensuring that a solution of the problem blows up in finite time. The blow-up time of the solution is estimated from above. By approximating the source function with the use of Steklov averaging with weight function coordinated with the nonlinear coefficients of the elliptic operator, we construct finite-difference schemes satisfying a grid counterpart of the integral conservation law.
Авторлар туралы
P. Matus
Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics
Хат алмасуға жауапты Автор.
Email: matus@im.bas-net.by
Белоруссия, Minsk; Lublin; Moscow
N. Churbanova
Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics
Email: matus@im.bas-net.by
Белоруссия, Minsk; Lublin; Moscow
D. Shchadinskii
Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics
Email: matus@im.bas-net.by
Белоруссия, Minsk; Lublin; Moscow
Қосымша файлдар
