On the role of conservation laws and input data in the generation of peaking modes in quasilinear multidimensional parabolic equations with nonlinear source and in their approximations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study unbounded solutions of a broad class of initial–boundary value problems for multidimensional quasilinear parabolic equations with a nonlinear source. By using a conservation law, we obtain conditions imposed solely on the input data and ensuring that a solution of the problem blows up in finite time. The blow-up time of the solution is estimated from above. By approximating the source function with the use of Steklov averaging with weight function coordinated with the nonlinear coefficients of the elliptic operator, we construct finite-difference schemes satisfying a grid counterpart of the integral conservation law.

作者简介

P. Matus

Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics

编辑信件的主要联系方式.
Email: matus@im.bas-net.by
白俄罗斯, Minsk; Lublin; Moscow

N. Churbanova

Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics

Email: matus@im.bas-net.by
白俄罗斯, Minsk; Lublin; Moscow

D. Shchadinskii

Institute of Mathematics; The John Paul II Catholic University of Lublin; Keldysh Institute of Applied Mathematics

Email: matus@im.bas-net.by
白俄罗斯, Minsk; Lublin; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016