Differentiation of the functional in a parametric optimization problem for a coefficient of a semilinear elliptic equation
- 作者: Chernov A.V.1,2
-
隶属关系:
- Lobachevskii State University of Nizhny Novgorod
- Nizhny Novgorod State Technical University
- 期: 卷 53, 编号 4 (2017)
- 页面: 551-562
- 栏目: Control Theory
- URL: https://journal-vniispk.ru/0012-2661/article/view/154368
- DOI: https://doi.org/10.1134/S0012266117040139
- ID: 154368
如何引用文章
详细
We study parametric optimization with respect to an integral criterion of the higher coefficient and the right-hand side of a second-order semilinear elliptic equation with the Dirichlet boundary condition. We obtain formulas for the first partial derivatives of the objective functional with respect to the control parameters. The total preservation (preservation for the entire set of control parameters) of the unique solvability of the boundary value problem for this equation is proved based on the theory of monotone operators.
作者简介
A. Chernov
Lobachevskii State University of Nizhny Novgorod; Nizhny Novgorod State Technical University
编辑信件的主要联系方式.
Email: chavnn@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603950; Nizhny Novgorod, 603600
补充文件
