Bessel Property of the System of Root Functions of a Second-Order Singular Operator on an Interval
- 作者: Kritskov L.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 54, 编号 8 (2018)
- 页面: 1032-1048
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154814
- DOI: https://doi.org/10.1134/S0012266118080049
- ID: 154814
如何引用文章
详细
For the system of root functions of an operator defined by the differential operation −u″ + p(x)u′ + q(x)u, x ∈ G = (0, 1), with complex-valued singular coefficients, sufficient conditions for the Bessel property in the space L2(G) are obtained and a theorem on the unconditional basis property is proved. It is assumed that the functions p(x) and q(x) locally belong to the spaces L2 and W2−1, respectively, and may have singularities at the endpoints of G such that q(x) = qR(x) +q′S(x) and the functions qS(x), p(x), q2S (x)w(x), p2(x)w(x), and qR(x)w(x) are integrable on the whole interval G, where w(x) = x(1 − x).
作者简介
L. Kritskov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: kritskov@cs.msu.ru
俄罗斯联邦, Moscow, 119991
补充文件
