The Universal Euler Characteristic of V-Manifolds


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V-manifold. We discuss a universal additive topological invariant of V-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for V-manifolds and for cell complexes of the described type.

作者简介

S. Gusein-Zade

Moscow State University, Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: sabir@mccme.ru
俄罗斯联邦, Moscow

I. Luengo

ICMAT, Madrid, Spain Department of Algebra, Geometry, and Topology, Complutense University of Madrid; ICMAT

Email: sabir@mccme.ru
西班牙, Madrid; Madrid

A. Melle-Hernández

Institute of Interdisciplinary Mathematics, Department of Algebra, Geometry, and Topology, Complutense University of Madrid

Email: sabir@mccme.ru
西班牙, Madrid

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018