Характеристика генов антоцианидин-3-О-глюкозилтрансфераз перца (Capsicum spp.) и их роль в биосинтезе антоцианов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В растении перца (Capsicum spp.) антоцианы важны не только для защиты фотолабильных соединений, но и для регуляции паттерна окраски плода. Ключевая роль в биосинтезе стабильных антоцианов принадлежит антоцианидин-3-О-глюкозилтрансферазам (UFGT). В данной работе охарактеризована структура и филогения трех генов-гомологов UFGT перца. Биохимический анализ сортов C. annuum (Сиреневый куб, Отелло и Сибиряк) и сорта C. frutescens (Самоцвет), различающихся паттерном пигментации плода в процессе созревания, показал наличие антоцианов в листьях и кожице плода всех образцов (кроме плода сорта Сибиряк). Наибольшее содержание обнаружено в фиолетовых листьях сорта Самоцвет. В кожице плода всех образцов содержание антоцианов падало по мере созревания. Экспрессионный анализ тех же тканей показал, что транскрипты генов UFGT1 (LOC107843659) и UFGT2 (LOC107843660) присутствуют в листьях всех сортов. В кожице плода транскрипты UFGT1 детектированы на стадиях созревания 1 (Сиреневый куб и Отелло) и 1–3 (Самоцвет), тогда как транскрипты UFGT2 – во всех образцах с наибольшим значением у сорта Сибиряк, где антоцианы отсутствовали. Транскрипты генов MBW-комплекса (anthocyanin2, MYC и WD40), регулирующего биосинтез антоцианов, присутствовали в листьях всех сортов с максимумом в фиолетовых листьях сорта Самоцвет. Сопоставление биохимических и экспрессионных данных выявило положительную корреляцию количества антоцианов в кожице плодов и в листьях с уровнем транскриптов гена UFGT1. Для гена UFGT2 корреляции не выявлено. Секвенирование и анализ гена UFGT1, включая промоторную область, у 18 сортов перца, различающихся паттерном окраски плода, обнаружил инвариантность последовательности, независимо от окраски незрелого плода. Анализ промоторов генов UFGT1 и UFGT2 показал различия в составе cis-регуляторных элементов, вовлеченных в ответ на стрессы, гормоны и связывание с транскрипционными факторами семейств MYB и MYC.

Об авторах

М. А. Филюшин

Федеральный исследовательский центр “Фундаментальные основы биотехнологии”
Российской академии наук

Автор, ответственный за переписку.
Email: michel7753@mail.ru
Россия, 119071, Москва

А. В. Щенникова

Федеральный исследовательский центр “Фундаментальные основы биотехнологии”
Российской академии наук

Email: michel7753@mail.ru
Россия, 119071, Москва

Е. З. Кочиева

Федеральный исследовательский центр “Фундаментальные основы биотехнологии”
Российской академии наук

Email: michel7753@mail.ru
Россия, 119071, Москва

Список литературы

  1. Mateos R.M., Jiménez A., Román P. et al. Antioxidant systems from pepper (Capsicum annuum L.): Involvement in the response to temperature changes in ripe fruits // Int. J. Mol. Sci. 2013. V.14. P. 9556–9580 https://doi.org/10.3390/ijms14059556
  2. Moscone E.A., Scaldaferro M.A., Grabiele M. et al. The evolution of chili peppers (Capsicum – Solanaceae): A cytogenetic perspective // Acta Hortic. 2007. V. 745. P. 137–170. https://doi.org/10.17660/ActaHortic.2007.745.5
  3. García C.C., Barfuss M.H., Sehr E.M. et al. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae) // Ann. Bot. 2016. V. 118. № 1. P. 35–51. https://doi.org/10.1093/aob/mcw079
  4. Borovsky Y., Oren-Shamir M., Ovadia R. et al. The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia // Theor. Appl. Genet. 2004. V. 109. P. 23–29. https://doi.org/10.1007/s00122-004-1625-9
  5. Aza-González C., Herrera-Isidrón L., Núñez-Palenius H.G. et al. Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development // Biol. Plant. 2013. V. 57. P. 49–55. https://doi.org/10.1007/s10535-012-0265-1
  6. Филюшин М.А., Джос Е.А., Щенникова А.В., Кочиева Е.З. Зависимость окраски плодов перца от соотношения основных пигментов и профиля экспрессии генов биосинтеза каротиноидов и антоцианов // Физиол. растений. 2020. Т. 67. С. 644–653. https://doi.org/10.31857/S0015330320050048
  7. Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids // Plant J. 2008. V. 54. P. 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
  8. Ma Y., Ma X., Gao X. et al. Light induced regulation pathway of anthocyanin biosynthesis in plants // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms222011116
  9. Naing A.H., Kim C.K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants // Plant Mol. Biol. 2018. V. 98. P. 1–18. https://doi.org/10.1007/s11103-018-0771-4
  10. Zhao Z.C., Hu G.B., Hu F.C. et al. The UDP glucose: Flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration // Mol. Biol. Rep. 2012. V. 6. P. 6409–6415.
  11. Liu Y., Tikunov Y., Schouten R.E. et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review // Front. Chem. 2018. V. 6. https://doi.org/10.3389/fchem.2018.00052
  12. Villa-Rivera M.G., Ochoa-Alejo N. Transcriptional regulation of ripening in chili pepper fruits (Capsicum spp.) // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms222212151
  13. Филюшин М.А., Джос Е.А., Щенникова А.В., Кочиева Е.З. Особенности экспрессии гена фактора транскрипции anthocyanin2 и его влияния на содержание антоцианов у образцов Capsicum chinense Jacq. с различной окраской плода // Генетика. 2020. Т. 56. С. 1161–1170. https://doi.org/10.31857/S0016675820090064
  14. Wang Y., Liu S., Wang H. et al. Identification of the regulatory genes of UV-B-induced anthocyanin biosynthesis in pepper fruit // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms23041960
  15. Liu J., Ai X., Wang Y. et al. Fine mapping of the Ca3GT gene controlling anthocyanin biosynthesis in mature unripe fruit of Capsicum annuum L. // Theor. Appl. Genet. 2020. V. 133(9). P. 2729–2742. https://doi.org/10.1007/s00122-020-03628-7
  16. Kobayashi S., Yamamoto N.G., Hirochika H. Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin – color mutants // J. Jpn. Soc. Hortic. Sci. 2005. V. 74. P. 196–203.
  17. Solovchenko A.E., Chivkunova O.B., Merzlyak M.N., Reshetnikova I.V. A spectrophotometric analysis of pigments in apples // Rus. J. Plant Phys. 2001. V. 48. № 5. P. 693–700.
  18. Cappellini F., Marinelli A., Toccaceli M. et al. Anthocyanins: From mechanisms of regulation in plants to health benefits in foods // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.748049
  19. Cui Z.H., Bi W.L., Hao X.Y. et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves // Plant Dis. 2017. V. 101(9). P. 1606–1615. https://doi.org/10.1094/PDIS-01-17-0104-RE
  20. Sicilia A., Catara V., Scialò E., Lo Piero A.R. Fungal infection induces anthocyanin biosynthesis and changes in DNA methylation configuration of blood orange [Citrus sinensis L. (Osbeck)] // Plants (Basel). 2021. V. 10(2). https://doi.org/10.3390/plants10020244
  21. Gutha L.R., Casassa L.F., Harbertson J.F., Naidu R.A. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves // BMC Plant Biol. 2010. V. 10. https://doi.org/10.1186/1471-2229-10-187

Дополнительные файлы


© М.А. Филюшин, А.В. Щенникова, Е.З. Кочиева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».