Alu-полиморфизм генов-регуляторов аутофагии и апоптоза как фактор продолжительности жизни человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для оценки вклада Alu-инсерций в генах-кандидатах старения и долголетия ACE, PLAT, COL13A1, LAMA2, CDH4, SEMA6A, PKHD1L1, STK38L, HECW1, TEAD1 в выживаемость на фоне старческого физиологического и патологического фенотипа проведен анализ ассоциаций с продолжительностью жизни. Получены данные о причинах смерти 1382 человек преклонного возраста из выборки татар, проживающих в Республике Башкортостан (всего 1790 человек от 18 до 109 лет). Риск смерти оказался повышен у лиц с Alu-инсерцией в гене STK38L (Ya5ac2145*II, HR = 2.07, P = 0.022). Alu-инсерционные варианты генов HECW1 и TEAD1 продемонстрировали протективный в отношении выживаемости эффект (Ya5NBC182*II, HR = 0.71, P = 0.038 и Ya5ac2013*II, HR = 0.74, P = 0.035 соответственно). С выживаемостью при различных клинических фенотипах ассоциированы Alu-полиморфные варианты генов SEMA6A (Yb8NBC597*ID, HR = 0.54, P = 0.016 при цереброваскулярных заболеваниях), TEAD1 (Ya5ac2013*II, HR = 0.57, P = 0.016 при сердечно-сосудистых патологиях) и LAMA2 (Ya5-MLS19*ID, HR = 0.36, P = 0.03 при полиморбидности). Таким образом, с выживаемостью и достижением долголетия оказались ассоциированы гены, вовлеченные в регуляцию аутофагии и апоптоза.

Полный текст

Доступ закрыт

Об авторах

В. В. Эрдман

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; Башкирский государственный медицинский университет

Автор, ответственный за переписку.
Email: danivera@mail.ru
Россия, Уфа; Уфа

Д. Д. Каримов

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; Уфимский научно-исследовательский институт медицины труда и экологии человека

Email: danivera@mail.ru
Россия, Уфа; Уфа

И. А. Туктарова

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: danivera@mail.ru
Россия, Уфа

А. А. Петинцева

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: danivera@mail.ru
Россия, Уфа

Я. Р. Тимашева

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; Башкирский государственный медицинский университет

Email: danivera@mail.ru
Россия, Уфа; Уфа

Т. Р. Насибуллин

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: danivera@mail.ru
Россия, Уфа

Список литературы

  1. Мушкамбаров Н.Н. Геронтология in polemico. Монография. М.: “Мед. информ. агентство”, 2011. 464 с.
  2. Чупаха М.В., Белоусова О.Н., Сухатерина Е.В. Характеристика биологического возраста и данных антропометрии при артериальной гипертензии на фоне метаболического синдрома у пациентов среднего и пожилого возраста // Соврем. проблемы здравоохранения и мед. статистики. 2024. № 1. С. 335–347. https://doi.org/10.24412/2312-2935-2024-1-335-347
  3. Maier H., Jeune B., Vaupel J.W. Exceptional Lifespans. Springer Nature, 2021. 344 p.
  4. Le Breton A., Bettencourt M.P., Gendrel A.V. Navigating the brain and aging: Exploring the impact of transposable elements from health to disease // Front. Cell. Dev. Biol. 2024. V. 12. https://doi.org/10.3389/fcell.2024.1357576
  5. Maxwell P.H. What might retrotransposons teach us about aging? // Curr. Genet. 2016. V. 62. P. 277–282. https://doi.org/10.1007/s00294-015-0538-2
  6. Li M., Schifanella L., Larsen P.A. Alu retrotransposons and COVID-19 susceptibility and morbidity // Hum. Genomics. 2021. V. 15. P. 2–11. https://doi.org/10.1186/s40246-020-00299-9
  7. Эрдман В.В., Каримов Д.Д., Насибуллин Т.Р. и др. Роль Alu-полиморфизма генов PLAT, PKHD1L1, STK38L и TEAD1 в формировании признака долгожительства // Успехи геронтологии. 2016. Т. 29. № 5. С. 709–716.
  8. Каримов Д.Д., Эрдман В.В., Насибуллин Т.Р. и др. Alu-инсерционно-делеционный полиморфизм генов COL13A1 и LAMA2: анализ ассоциаций с долгожительством // Генетика. 2016. Т. 52. №. 10. С. 1185–1193. https://doi.org/10.7868/S0016675816100039
  9. Erdman V.V., Karimov D.D., Tuktarova I.A. et al. Alu deletions in LAMA2 and CDH4 genes are key components of polygenic predictors of longevity // Intern. J. of Mol. Sci. 2023. № 21. https://doi.org/10.3390/ijms232113492
  10. Wang D., He J., Huang B. et al. Emerging role of the Hippo pathway in autophagy // Cell Death & Disease. 2020. V. 11. № 10. P. 880. https://doi.org/10.1038/s41419-020-03069-6
  11. Zhou Y.H., Huang T.T., Cheng A.S.L. et al. The TEAD family and its oncogenic role in promoting tumorigenesis // Intern. J. Mol. Sci. 2016. V. 17. № 1. P. 138. https://doi.org/10.3390/ijms17010138
  12. Reed M.J., Damodarasamy M., Banks W.A. The extracellular matrix of the blood-brain barrier: Structural and functional roles in health, aging, and Alzheimer’s disease // Tissue Barriers. 2019. V. 7. № 4. https://doi.org/10.1080/21688370.2019.1651157
  13. Carmignac V., Svensson M., Körner Z. еt аl. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A // Human Mol. Genet. V. 20. № 24. P. 4891–4902. https://doi.org/10.1093/hmg/ddr427
  14. Fard D., Tamagnone L. Semaphorins in health and disease // Cytokine & Growth Factor Reviews. 2021. V. 57. P. 55–63. https://doi.org/10.1016/j.cytogfr.2020.05.006
  15. Zhang C., Hong C.D., Wang H.L. et al. The role of semaphorins in small vessels of the eye and brain // Pharmacol. Research. 2020. V. 160. https://doi.org/10.1016/j.phrs.2020.105044
  16. Kaushik A., Parashar S., Ambasta R.K., Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer // Ageing Res. Reviews. 2024. V. 96. P. 102279. https://doi.org/10.1016/j.arr.2024.102279
  17. Le D., Brown L., Malik K., Murakami S. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging // Intern. J. Mol. Sci. 2021. V. 22. № 24. https://doi.org/10.3390/ijms222413178
  18. Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology // Nature Rev. Genet. 2022. V. 23. № 2. P. 120–133. https://doi.org/10.1038/s41576-021-00414-z
  19. Yepes M. The plasminogen activation system promotes neurorepair in the ischemic brain // Current Drug Targets. 2019. V. 20. № 9. P. 953–959. https://doi.org/10.2174/1389450120666181211144550
  20. Resink T.J., Joshi M.B., Kyriakakis E. Cadherins and cardiovascular disease // Swiss Med. Weekly. 2009. V. 139. № 0910. P. 122–134.
  21. Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution // Nature Rev. Genet. 2009. V. 10. № 10. P. 691–703. https://doi.org/10.1038/nrg2640
  22. Nefedova L.N., Kim A.I. The role of retroelements in the evolution of animal genomes // Biol. Bul. Reviews. 2022. V. 12. № 1. P. 29–40. https://doi.org/10.1134/S2079086422010042
  23. Davidson-Pilon C. Lifelines: Survival analysis in Python // J. Open Source Software. 2019. V. 4. № 40. P. 1317. https://doi.org/10.21105/joss.01317
  24. Cao L., Li H., Liu X. et al. Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers // BMC Cancer. 2023. V. 23. № 1. P. 526. https://doi.org/10.1186/s12885-023-11007-w
  25. Li Y., Zhang L., Zhou J. et al. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy // Cell Proliferation. 2015. V. 48. № 3. P. 338–347. https://doi.org/10.1111/cpr.12184
  26. Li Y., Ozaki T., Kikuchi H. et al. A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner // Oncogene. 2008. V. 27. № 26. P. 3700–3709. https://doi.org/10.1038/sj.onc.1211032
  27. Quiroga M., Rodríguez-Alons A., Alfonsín G. et al. Protein degradation by E3 ubiquitin ligases in cancer stem cells // Cancers. 2022. V. 14. https://doi.org/10.3390/cancers14040990
  28. Huang S.S., Hsu L.J., Chang N.S. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system // FASEB Bioadv. 2020. V. 2. P. 234–253. https://doi.org/10.1096/fba.2019-00060
  29. Гомбоева Д.Е., Брагина Е.Ю., Назаренко М.С., Пузырев В.П. Обратная коморбидность между онкологическими заболеваниями и болезнью Гентингтона: обзор эпидемиологических и биологических доказательств // Генетика. 2020. Т. 56. № 3. С. 260–271. https://doi.org/10.31857/S0016675820030054
  30. Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond // Physiol. Reviews. 2014. V. 94. № 4. P. 1287–1312. https://doi.org/10.1152/physrev.00005.2014
  31. Ramaccini D., Pedriali G., Perrone M. et al. Some insights into the regulation of cardiac physiology and pathology by the Hippo pathway // Biomedicines. 2022. V. 10. № 3. P. 726. https://doi.org/10.3390/biomedicines10030726
  32. Lin K.C., Park H.W., Guan K.L. Regulation of the Hippo pathway transcription factor TEAD // Trends Biochem. Sci. 2017. V. 42. P. 862–872. https://doi.org/10.1016/j.tibs.2017.09.003
  33. Zhang Y., Ren Y., Li X. et al. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights // Intern. J. Biol. Macromolecules. 2024. https://doi.org/10.1016/j.ijbiomac.2024.132473
  34. Hergovich A. The roles of NDR protein kinases in Hippo signalling // Genes. 2016. V. 7. № 5. P. 21. https://doi.org/10.3390/genes7050021
  35. Sharif A.A.D., Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology // Seminars in Cancer Biology. 2018. V. 48. P. 104–114.
  36. Jonischkies K., Del Angel M., Demiray Y.E. et al. The NDR family of kinases: Essential regulators of aging // Frontiers in Mol. Neurosci. 2024. V. 17. https://doi.org/10.3389/fnmol.2024.1371086
  37. Rawat P., Thakur S., Dogra S. et al. Diet-induced induction of hepatic serine/threonine kinase STK38 triggers proinflammation and hepatic lipid accumulation // J. Biol. Chemistry. 2023. V. 299. № 5. https://doi.org/10.1016/j.jbc.2023.104678
  38. Aman Y., Schmauck-Medina T., Hansen M. et al. Autophagy in healthy aging and disease // Nat. Aging. 2021. V. 1. № 8. P. 634–650. https://doi.org/10.1038/s43587-021-00098-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Накопленный риск смертности от всех причин в общей группе, ассоциированный с Alu-инсерцией в генах STK38L (a), TEAD1 (б) и HECW1 (в и г).

Скачать (300KB)
3. Рис. 2. Накопленный риск смертности от всех причин в группе мужчин, ассоциированный с Alu-инсерцией в гене STK38L.

Скачать (77KB)
4. Рис. 3. Накопленный риск смертности от всех причин в группе женщин, ассоциированный с Alu-инсерцией в гене HECW1.

Скачать (80KB)
5. Рис. 4. Накопленный риск смертности в группах, дифференцированных по причинам смерти: от цереброваскулярных заболеваний, ассоциированный с Alu-инсерцией в гене SEMA6A (а); от сердечно-сосудистых заболеваний, ассоциированный с Alu-инсерцией в гене TEAD1 (б); при полиморбидности, ассоциированный с Alu-инсерцией в гене LAMA2 (в).

Скачать (154KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».