Analysis of Spectra of Solar Wind Magnetic Field Components Fluctuations Across Fast Reverse Interplanetary Shocks
- 作者: Sapunova O.V.1, Borodkova N.L.1, Yermolaev Y.I.1, Zastenker G.N.1
-
隶属关系:
- Space Research Institute, Russian Academy of Sciences
- 期: 卷 65, 编号 5 (2025)
- 页面: 610-619
- 栏目: Articles
- URL: https://journal-vniispk.ru/0016-7940/article/view/352720
- DOI: https://doi.org/10.7868/S3034502225050053
- ID: 352720
如何引用文章
详细
Fluctuations in the values of the IMF components of the solar wind plasma near the front of a fast reverse shock were analyzed using the WIND satellite data with a time resolution of 11 Hz. Two ways of dividing the magnetic field vector into components were considered: according to the GSE coordinate system and relative to the normal of the interplanetary shock front. It was found that the break frequency of the fluctuation spectrum of magnetic field components in the solar wind upstream region lies in the frequency range from 0.37 to 1.37 Hz. In the solar wind downstream region, the break frequency shifts to the range of 0.45–1.58 Hz, which corresponds to the scale of the proton inertial length. The slope of the fluctuation spectra of the IMF components was shown to vary both on MHD and on transient scales, although to different degrees. On transient scales, the difference can be significant.
作者简介
O. Sapunova
Space Research Institute, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sapunova_olga@cosmos.ru
Moscow, Russia
N. Borodkova
Space Research Institute, Russian Academy of Sciences
Email: borodkova_nl@cosmos.ru
Moscow, Russia
Y. Yermolaev
Space Research Institute, Russian Academy of Sciences
Email: yermol@cosmos.ru
Moscow, Russia
G. Zastenker
Space Research Institute, Russian Academy of Sciences
Email: gzastenk@iki.rssi.ru
Moscow, Russia
参考
- Рязанцева М.О., Рахманова Л.С., Ермолаев Ю.И., Лодкина И.Г., Застенкер Г.Н., Чесалин Л.С. Характеристики турбулентного потока солнечного ветра в областях компрессии плазмы // Космические исследования. Т. 58. № 6. С. 503–512. 2020. https://doi.org/10.31857/S0023420620060096
- Сапунова О.В., Бородкова Н.Л., Застенкер Г.Н. Анализ спектров флуктуаций величины потока плазмы и модуля магнитного поля на обратных ударных волнах // Солнечно-земная физика. Т. 10. № 3. С. 62–69. 2024. https://doi.org/10.12737/szf-103202407
- Bruno R., Carbone V. The solar wind as a turbulence laboratory // Living Rev. Solar Phys. V. 10. № 1. ID 2. 2013. https://doi.org/10.12942/lrsp-2013-2
- Howes G.G., Cowley S.C., Dorland W., Hammett G.W., Quataert E., Schekochihin A.A. A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind // J. Geophys. Res. – Space. V. 113. № 5. ID A05103. 2008. https://doi.org/10.1029/2007JA012665
- Kolmogorov A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number // J. Fluid Mech. V. 13. № 1. P. 82–85. 1962. https://doi.org/10.1017/S0022112062000518
- Leamon R.J., Matthaeus W.H., Smith C.W., Zank G.P., Mullan D.J., Oughton S. MHD-driven kinetic dissipation in the solar wind and corona // Astrophys. J. V. 537. № 2. P. 1054–1062. 2000. https://doi.org/10.1086/309059
- Leppin R P., Acũna M.H., Burlaga L.F. et al. The WIND magnetic field investigation // Space Sci. Rev. V. 71. № 1–4. P. 207–229. 1995. https://doi.org/10.1007/BF00751330
- Lin R.P., Anderson K.A., Ashford S. et al. A three-dimensional plasma and energetic particle experiment for the WIND spacecraft // Space Sci. Rev. V. 71. № 1–4. P. 125–153. 1995. https://doi.org/10.1007/BF00751328
- Matthaeus W.H., Weygand J.M., Dasso S. Ensemble space-time correlation of plasma turbulence in the solar wind // Phys. Rev. Lett. V. 116. ID 245101. 2016. https://doi.org/10.1103/PhysRevLett.116.245101
- Ogilvie K.W., Chornay D.J., Fritzenreiter R.J. et al. SWE, a comprehensive plasma instrument for the Wind spacecraft // Space Sci. Rev. V. 71. № 1–4. P. 55–77. 1995. https://doi.org/10.1007/BF00751326
- Oliveira D.M. Magnetohydrodynamic shocks in the interplanetary space: a theoretical review // Braz. J. Phys. V. 47. № 1. P. 81–95. 2017. https://doi.org/10.1007/s13538-016-0472-x
- Park B., Pitňa A., Šafránková J., Němeček Z., Krupařová O., Krupař V., Zhao L., Silwal A. Change of spectral properties of magnetic field fluctuations across different types of interplanetary shocks // Astrophys. J. Lett. V. 954. № 2. ID 51. 2023. https://doi.org/10.3847/2041-8213/acf4ff
- Pitňa A., Šafránková J., Němeček Z., Ďurovcová T., Kis A. Turbulence upstream and downstream of interplanetary shocks // Front. Phys. V. 8. ID 626768. 2021. https://doi.org/10.3389/fphy.2020.626768
- Schekochihin A.A., Cowley S.C., Dorland W., Hammett G.W., Howes G.G., Quataert E., Tatsuno T. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas // Astrophys. J. Suppl. S. V. 182. № 1. P. 310–377. 2009. https://doi.org/ 10.1088/0067-0049/182/1/310
- Smith C.W., Mullan D.J., Ness N.F., Skoug R.M., Steinberg J. Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation // J. Geophys. Res. – Space. V. 106. № 9. P. 18625–18634. 2001. https://doi.org/10.1029/2001JA000022
- Zhao L.-L., Zank G.P., He J.S. et al. Turbulence and wave transmission at an ICME-driven shock observed by the Solar Orbiter and Wind // Astron. Astrophys. V. 656. ID A3. 2021. https://doi.org/10.1051/0004-6361/202140450
补充文件

