Induced proton precipitations from the inner radiation belt registered in Oceania

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Detected were induced proton precipitations from the inner radiation belt went with almost a half (11) of 25 anomalous electron events registered onboard “Meteor-M №2” satellite in 2014−2022 in Oceania at low latitudes in the morning hours of local time under quiet geomagnetic conditions. It is surmised that such proton precipitations could be a manifestation of cyclotron resonance between protons and low frequency electromagnetic waves stimulated by a mobile ionospheric heater. Observed effects in anomalous electron events, which could be interpreted in the framework of a mobile ionospheric heater concept, are also discussed.

About the authors

E. A. Ginzburg

Fedorov Institute of Applied Geophysics, Roshydromet

Author for correspondence.
Email: e_ginzburg@mail.ru
Russian Federation, Moscow

M. D. Zinkina

Fedorov Institute of Applied Geophysics, Roshydromet

Email: marinaantipina20@mail.ru
Russian Federation, Moscow

Yu. V. Pisanko

Fedorov Institute of Applied Geophysics, Roshydromet; Moscow Institute of Physics and Technology (National Research University)

Email: pisanko@ipg.geospace.ru
Russian Federation, Moscow; Dolgoprudny (Moscow Region)

References

  1. Гинзбург Е.А., Зинкина М.Д., Писанко Ю.В. Индуцированные высыпания электронов из внутреннего радиационного пояса, зарегистрированные в Океании // Геомагнетизм и аэрономия. Т. 63. № 6. С. 751−763. 2023.
  2. Тверской Б.А. Основы теоретической космофизики // Избранные труды. М.: УРСС. С. 376. 2004. ISBN 5-354-00647-3.
  3. Bashkirov V.F., Denisov Yu.I., Gotselyuk Yu.V., Kuznetsov S.N., Myagkova I.N., Sinyakov A.V. Trapped and quasi-trapped radiation observed by CORONAS-I satellite // Radiation Measurements. V. 30. P. 537−546. 1999.
  4. Biryakov A.S., Grigoryan O.R., Kuznetsov S.N., Ryaboshapka A.V., Ryabukha S.B. Low-energy charged particles at near equatorial latitudes according to MIR orbital station data // Adv. Space Res. V.10. P.10189. 1996.
  5. Callaghan E.E., Maslen S.H. The magnetic field of a finite solenoid // NASA Technical Note D-465, Lewis Research Center, Cleveland, Ohio, National Aeronautics and Space Administration, Washington, October 1960.
  6. Dovoedo Y.H. Contributions to outlet detection methods: some theory and applications // A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Information Systems, Statistics, and Management Science in the Graduate School of the University of Alabama, Tuscaloosa, Alabama. P. 180. 2011. https://ir-api.ua.edu/api/core/bitstreams/48a91f94-9ee7-4918-8c3c-d1757737ea85/content
  7. Eliasson B., Chang C.-L., Papadopoulos K. Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region // J. Geophys. Res. V. 117. P. 10320. 2012. https://doi.org/10.1029/2012JA017935
  8. Eliasson B., Papadopoulos K. HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region // J. Geophys. Res.− Space. V.121. P. 2727−2742. 2016. https://doi.org/10.1002/2015JA022323
  9. Eliasson B., Papadopoulos K. Pitch angle scattering of relativistic electrons near electromagnetic ion cyclotron resonances in diverging magnetic fields // Plasma Phys. Control. Fusion. V. 59. P. 104003. 2017. https://doi.org/10.1088/1361-6587/aa8100
  10. Eliasson B., Milikh G.M., Liu T.C., Shao X., Papadopoulos K. Simulations of the generation of energetic electrons and the formation of descending artificial plasma layers during HF heating at Arecibo // J. Geophys. Res.− Space. V. 123. P. 10301−10309. 2018. https://doi.org/10.1029/2018JA026073
  11. Esser B., Beeson S.R., Dickens J.C., Mankowski J.J., Antonsen T.M., Neuber A.A. The path to a transportable ionospheric heater – tuning methods // IEEE Trans Plasma Sci. V. 45. P. 1051−1057. 2017. https://doi.org/10.1109/TPS.2017.2699925
  12. Esser B., Mauch D., Dickens J., Mankowski J., Neuber A. Tunable, electrically small, inductively coupled antenna for transportable ionospheric heating // Radio Sci. V. 53. P. 496−508. 2018. https://doi.org/10.1002/2017RS006484
  13. Gekelman W., Pribyl P., Vincena S., Tang S.W., Papadopoulos K. Ferrite based antennae for launching Alfven waves // Rev. Sci. Instrum. V. 90. P. 083505. 2019. https://doi.org/10.1063/1.5103171
  14. Meredith N.P., Horne R.B., Clilverd M.A., Ross J.P. An investigation of VLF transmitter wave power in the inner radiation belt and slot region // J. Geophys. Res.− Space. V. 124. P. 5246−5259. 2019. https://doi.org/10.1029/2019JA026715
  15. Nagata K., Kohno T., Hasere N., Kikuchi J., Doke T. Electron (0.19-3.2 MeV) and proton (0.58-35 MeV) precipitations observed by OHZORA satellite at low latitude zones L = 1.6-1.8 // Planet. Space Sci. V. 36. P. 591. 1988.
  16. Narayan A.H. A highly efficient, megawatt class, constant impedance tunable power extraction circuit for mobile ionospheric heaters // Dissertation submitted to the Faculty (Electrical Engineering Department) of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy. P. 81. 2020. https://doi.org/10.13016/vhln-r6io
  17. Papadopoulos K., Chang C.-L., Labenski J., Wallace T. First demonstration of HF-driven ionospheric currents // Geophys. Res. Lett. V. 38. P. 20107. 2011. https://doi.org/10.1029/2011GL049263
  18. Papadopoulos K., Gumenov N.A., Shao X., Doxas I., Chang C.L. HF-driven currents in the polar ionosphere // Geophys. Res. Lett. V. 38. P. 12103. 2011. https://doi.org/10.1029/2011GL047368
  19. Papadopoulos K. Ionospheric modifications using mobile, high power HF transmitters based on TPM technology // Paper presented at 2015 IEEE International Conference on Plasma Science (ICOPS), 24-28 May, Antalya, Turkey. 2015. https://doi.org/10.1109/PLASMA.2015.7179496
  20. Petrov A.N., Grigoryan O.R., Panasyuk M.I. Energy spectrum of proton flux near geomagnetic equator at low altitudes // Adv. Space Res. V. 41. P. 1269−1273. 2008.
  21. Petrov A.N., Grigoryan O.R., Kuznetsov N.V. Creation of model of quasi-trapped proton fluxes below Earth’s radiation belt // Adv. Space Res. V. 43. P. 654−658. 2009.
  22. Selesnick R.S., Looper M.D., Mewaldt R.A. A theoretical model of the inner proton radiation belt // Space Weather. V. 5. S04003. 2007. https://doi.org/10.1029/2006SW000275
  23. Selesnick R.S., Hudson M.K., Kress B.T. Direct observation of the CRAND proton radiation belt source // J. Geophys. Res.− Space. V. 118. P. 7532−7537. 2013. https://doi.org/10.1002/2013JA019338
  24. Selesnick R.S., Baker D.N., Kanekal S.G., Hoxle V.C., Li X. Modeling the proton radiation belt with Van Allen probes relativistic electron-proton telescope data // J. Geophys. Res.− Space. V. 123. P. 685−697. 2018. https://doi.org/10.1002/2017JA024661
  25. Shabansky V.P. On the first phase of a magnetic storm // Space Res. V. 5. P. 125−147. 1965.
  26. Shao X., Papadopoulos K., Sharma A.S. Control of the energetic proton flux in the inner radiation belt by artificial means // J. Geophys. Res. V. 114. A07214. 2009. https://doi.org/10.1029/2009JA014066
  27. Sharma A.S., Eliasson B., Shao X., Papadopoulos K. Generation of ELF waves during HF heating of the ionosphere at midlatitudes // Radio Sci. 51. P. 962−971. 2016. https://doi.org/10.1002/2016RS005953
  28. Streltsov A.V., Berthelier J.-J., Chernyshov A.A., Frolov V.L., Honary F., Kosch M.J., McCoy R.P., Mishin E.V., Rietveld M.T. Past, present and future of active radio frequency experiments in space // Space Sci. Rev. 214:118. 2018. https://doi.org/10.1007/s11214-018-0549-7
  29. Triskova L., Veselovsky I.S. On the large-scale magnetic field structure in the outer heliosphere /Solar Wind Seven. Ed. E. Marsh, R. Schwenn. New York, London, Seoul, Tokio: Pergamon Press. P. 297−300. 1992.
  30. Vartanyan A., Milikh G.M., Eliasson B., Najmi A.C., Parrot M., Papadopoulos K. Generation of whistler waves by continuous HF heating of the upper ionosphere // Radio Sci. V. 51. P. 1188−1198. 2016. https://doi.org/10.1002/2015RS005892
  31. Wang Y., Gekelman W., Pribyl P., Van Compernolle B., Papadopoulos K. Generation of shear Alfven waves by repetitive electron heating // J. Geophys. Res.− Space. V. 121. P. 567−577. 2016. https://doi.org/10.1002/2015JA022078

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».