Evaluation the origin of conformational preferences in trifluoroacetylacetaldehyde by detail analysis of the intramolecular hydrogen bond and π-electron delocalization in the ground and first excited states


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the current research, the origin of conformational preferences in trifluoro-acetylacetaldehyde (TFAAD) by detail analysis of the intramolecular hydrogen bond (IMHB) and π-electron delocalization (π-ED) was investigated. In this regard, all of the possible conformations of keto and enol tautomers of TFAAD at various theoretical levels were optimized. Our results reveal that the chelated enol forms (E11, E21) have extra stability with respect to the other conformations, and at all of the computational levels E21 is more stable than the E11 and identifies as the global minimum. We expected that the extra stability of E21 is probably related to the stronger intramolecular hydrogen bond (IMHB), but quantum chemical calculations confirm the stronger IMHB of E11. Since, the chelated forms are resonance assisted hydrogen bond (RAHB) systems, it seems that the π-ED concept can probably justify this duality. The significance of π-ED by the geometrical factor of Gilli (λ) and the harmonic oscillator model of aromaticity (HOMA) were assessed. According to these indicators, E21 has higher π-ED than E11, in excellent agreement with their stability order. Finally, the population analysis by the natural bond orbital method and atoms in molecules theory were carried out. The stabilization charge transfer energies of RAHB systems also indicate more π- ED in E21. Consequently the π-electron delocalization effect is the superior factor determining the global minimum. The IMHB of the chelated forms, in the first singlet excited state, were also studied. Surprisingly, the results show that the IMHB in E21 is stronger than in E11, in contrast to the ground state.

作者简介

F. Naeini

Department of Chemistry, Faculty of Sciences

Email: anowroozi@chem.usb.ac.ir
伊朗伊斯兰共和国, Zahedan

A. Nowroozi

Department of Chemistry, Faculty of Sciences

编辑信件的主要联系方式.
Email: anowroozi@chem.usb.ac.ir
伊朗伊斯兰共和国, Zahedan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017