ПРИЛОЖЕНИЕ

В этом приложении комментарии предваряются символом решетки #

Расчет длины куба для моделирования BOX_SIZE = LJ_SIGMA * (PI * N / (6.0 * PHI)) ** (1.0 / 3.0)

Подключение пакета ESPResSo

SYSTEM = espressomd.System(box_l = (BOX_
SIZE, BOX_SIZE, BOX_SIZE))

SYSTEM.time step = TIME STEP

Мы представляем взаимодействие между частицами как несвязное взаимодействие и в качестве потенциала взаимодействия используем потенциал Леннарда-Джонса. Здесь мы используем упомянутый выше r_{cut} , чтобы получить отталкивающее взаимолействие.

SYSTEM.non_bonded_inter[0, 0].lennard_jones. set_params(epsilon = LJ_EPSILON, sigma = LJ_ SIGMA, cutoff = LJ_CUT, shift = "auto") # Задание стохастического равномерного распределения направлений моментов частиц в пространстве

np.random.seed(seed = SEED)

DIP PHI = 2.0 * PI * np.random.random((N, 1))

DIP_COS_THETA = 2.0 * np.random. random((N, 1)) - 1.0

DIP_SIN_THETA = np.sin(np.arccos(DIP_COS_THETA))

DIP = np.hstack((DIP_SIN_THETA * np.sin(DIP_PHI), DIP_SIN_THETA * np.cos(DIP_PHI), DIP_COS_THETA))

Задание параметров для установления термодинамического равновесия

 $POS = BOX_SIZE * np.random.random((N, 3))$

PARTICLES = SYSTEM.part.add(pos = POS, rotation = N * [(1, 1, 1)], dip = DIP)

SYSTEM.integrator.set_steepest_descent(f_max= = 0.0, gamma = 0.1, max displacement = 0.05)

Мы применяем алгоритм наискорейшего спуска, чтобы исключить возможные перекрытия частиц.

while SYSTEM.analysis.energy()["total"] > 5 * KT * N: SYSTEM.integrator.run(20)