Numerical simulation of a 3U-CubeSat orbit maintenance using electrothermal engine and magnetic attitude control system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study focuses on performing orbit maintenance for a 3U-CubeSat using an electrothermal engine and a simple active magnetic attitude control system. The satellite is equipped with magnetorquers and a magnetometer. As such, it cannot maintain the engine axis attitude along the tangential direction for orbit maintenance. Instead, by realizing a constant dipole moment and damping, attitude along the geomagnetic induction vector is constructed. This attitude is close to tangential on a sun-synchronous orbit near the equator. Numerical simulation of the satellite motion is performed showing capability to provide simple and reliable orbit maintenance. Thrust parameters in uncontrolled motion are analyzed.

全文:

受限制的访问

作者简介

D. Roldugin

Keldysh Institute of Applied Mathematics

编辑信件的主要联系方式.
Email: rolduginds@gmail.com
俄罗斯联邦, Moscow

D. Ivanov

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
俄罗斯联邦, Moscow

S. Tkachev

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
俄罗斯联邦, Moscow

Ya. Mashtakov

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
俄罗斯联邦, Moscow

A. Khokhlov

Geoscan Ltd.

Email: rolduginds@gmail.com
俄罗斯联邦, Saint Petersburg

K. Starikov

Geoscan Ltd.; Saint-Petersburg State University

Email: rolduginds@gmail.com
俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Ovchinnikov M.Y., Roldugin D.S. A survey on active magnetic attitude control algorithms for small satellites // Progress in Aerospace Sciences. 2019. V. 109. Art. ID. 100546. https://doi.org/10.1016/j.paerosci.2019.05.006
  2. Searcy J.D., Pernicka H.J. Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach // J. Guidance, Control, and Dynamics. 2012. V. 35. Iss. 6. P. 1693–1701.https://doi.org/10.2514/1.57344
  3. Psiaki M.L. Global Magnetometer-Based Spacecraft Attitude and Rate Estimation // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 2. P. 240–250.
  4. Abdelrahman M., Park S.-Y. Integrated attitude determination and control system via magnetic measurements and actuation // Acta Astronautica. 2011. V. 69. Iss. 3–4. P. 168–185. https://doi.org/10.1016/J.actaastro.2011.03.010
  5. Буланов Д.М., Сазонов В.В. Исследование эволюции вращательного движения спутника Фотон М-2 // Косм. исслед. 2020. Т. 58. № 4. С. 291–304. https://doi.org/10.31857/S0023420620040032
  6. Абрашкин В.И., Воронов К.Е., Дорофеев А.С. и др. Определение вращательного движения малого космического аппарата Аист-2Д по данным магнитных измерений // Косм. исслед. 2019. Т. 57. № 1. С. 61–73. https://doi.org/10.1134/S0023420619010011
  7. Крамлих А.В., Николаев П.Н., Рылько Д.В. Бортовой двухэтапный алгоритм определения ориентации наноспутника SAMSAT-ION // Гироскопия и навигация. 2023. Т. 31. № 2. С. 65–85.
  8. Ovchinnikov M.Y., Roldugin D.S., Penkov V.I. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation // Acta Astronautica. 2012. V. 77. P. 48–60. https://doi.org/10.1016/j.actaastro.2012.03.001
  9. Lovera M., Astolfi A. Spacecraft attitude control using magnetic actuators // Automatica. 2004. V. 40. Iss. 8. P. 1405–1414. https://doi.org/10.1016/j.automatica.2004.02.022
  10. Celani F. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers // Acta Astronautica. 2015. V. 107. P. 87–96. https://doi.org/10.1016/j.actaastro.2014.11.027
  11. Wisniewski R. Linear Time-Varying Approach to Satellite Attitude Control Using Only Electromagnetic Actuation // J. Guidance, Control, and Dynamics. 2000. V. 23. Iss. 4. P. 640–647. https://doi.org/10.2514/2.4609
  12. Okhitina A., Roldugin D., Tkachev S. Application of the PSO for the construction of a 3-axis stable magnetically actuated satellite angular motion // Acta Astronautica. 2022. V. 195. P. 86–97. https://doi.org/10.1016/J.ACTAASTRO.2022.03.001
  13. Сарычев В.А., Сазонов В.В. Оптимальные параметры пассивных систем ориентации спутников // Косм. исслед. 1976. Т. 14. № 2. С. 198–208.
  14. Сарычев В.А., Овчинников М.Ю. Движение спутника с постоянным магнитом относительно центра масс // Косм. исслед. 1986. Т. 24. № 4. С. 527–543.
  15. Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наукова Думка, 1984. 187 с.
  16. Guerman A.D., Ivanov D.S., Roldugin D.S. et al. Orbital and Angular Dynamics Analysis of the Small Satellite SAR Mission INFANTE // Cosmic Research. 2020. V. 58. Iss. 3. P. 206–217. https://doi.org/10.1134/S0010952520030016
  17. ГОСТ Р 25645.166–2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли. М.: ИПК Издательство стандартов, 2004. 24 с.
  18. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. 2021. V. 73. Iss. 1. Art. ID. 49. https://doi.org/10.1186/s40623–020–01288-x
  19. Иванов Д.С., Овчинников М.Ю., Ролдугин Д.С. и др. Программный комплекс для моделирования орбитального и углового движения спутников // Математическое моделирование. 2019. Т. 31. № 12. С. 44–56. https://doi.org/10.1134/S0234087919120049

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geoscan-Edelweiss device

下载 (187KB)
3. Fig. 2. Accelerometer readings during pulse generation

下载 (278KB)
4. Fig. 3. Angular velocity during engine start-up

下载 (198KB)
5. Fig. 4. Orientation of thrust in the spacecraft body

下载 (70KB)
6. Fig. 5. Stabilization by the geomagnetic induction vector

下载 (148KB)
7. Fig. 6. Comparison of the tangential direction and the vector of geomagnetic induction

下载 (282KB)
8. Fig. 7. Stabilization of the device by the induction vector

下载 (219KB)
9. Fig. 8. Orbit parameter

下载 (200KB)
10. Fig. 9. Average major semi-axis

下载 (198KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».