Atomistic simulation of paratellurite α-teo2 crystal: i. Defects and ionic transport
- 作者: Ivanov-Schitz A.K.1
-
隶属关系:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- 期: 卷 69, 编号 6 (2024)
- 页面: 1009-1017
- 栏目: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://journal-vniispk.ru/0023-4761/article/view/272134
- DOI: https://doi.org/10.31857/S0023476124060116
- EDN: https://elibrary.ru/YGWVEB
- ID: 272134
如何引用文章
详细
The structure and defects of α-TeO2 paratellurite crystals have been studied using computer modeling. It has been shown that in α-TeO2 the preferred point defects are oxygen vacancies and interstitial oxygen ions. Oxygen vacancies can be either isolated or form complex clusters. It is energetically most favorable for interstitial oxygen ions to be located in channels that penetrate the paratellurite structure along the c-axis. The origin of possible oxygen–ion transport in α-TeO2 is discussed.
全文:

作者简介
A. Ivanov-Schitz
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
编辑信件的主要联系方式.
Email: alexey.k.ivanov@gmail.com
俄罗斯联邦, Moscow
参考
- Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В. и др. // Кристаллография. 1987. Т. 32. С. 609.
- Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022-3719/21/i=25/a=009
- Дудка А.П., Головина Т.Г., Константинова А.Ф. // Кристаллография. 2019. Т. 64. С. 930. https://doi.org/10.1134/S0023476119060043
- Ceriotti M., Pietrucci F., Bernasconi M. // Phys. Rev. B. 2006. V. 73. P. 104304. https://doi.org/10.1103/PhysRevB.73.104304
- Champarnaud-Mesjard J.C., Blanchandin S., Thomas P. et al. // J. Phys. Chem. Solids. 2000. V. 61. P. 1499. https://doi.org/10.1016/S0022-3697(00)00012-3
- Малютин С.А., Саплавская К.К., Карапетьянц М.Х. // Журн. неорган. химии. 1971. Т. 16. С. 781.
- Deringer V.L., Stoffel R.P., Dronskowski R. // Cryst. Growth Des. 2014. V. 14. P. 871. http://doi.org/10.1021/cg401822g
- Uchida N., Ohmachi Y. // J. Appl. Phys. 1969. V. 40. P. 4692. https://doi.org/10.1063/1.1657275
- Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://
- Gupta N., Voloshinov V. // Opt. Lett. 2005. V. 30. P. 985. https://doi.org/10.1364/OL.30.000985
- Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647
- El-Mallawany R.A.H. Tellurite Glasses Handbook: Physical Properties and Data; CRC Press: Boca Raton, FL, 2002.
- Li Y., Fan W., Sun H. et al. // J. Appl. Phys. 2010. V. 107. P. 093506. https://doi.org/10.1063/1.3406135
- Liu Z., Yamazaki T., Shen Y. et al. // Appl. Phys. Lett. 2007. V. 90. P. 173119. https://doi.org/10.1063/1.2732818
- Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950.
- Куликов А.Г. // Образование приповерхностных структур в кристаллах парателлурита и тетрабората лития при миграции носителей заряда во внешнем электрическом поле. Дис. … канд. физ.-мат. наук. Москва. 2019.
- Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90.
- Torzuoli L., Bouzid A., Thomas P., Masson O. // Mater. Res. Express. 2020. V. 7. P. 015202. https://doi.org/10.1088/2053-1591/ab6128
- Mayo S.L., Olafson B.D., Goddard W.A. // J. Phys. Chem. 1990. V. 94. P. 8897. http://dx.doi.org/10.1021/j100389a010
- Gulenko A., Masson O., Berghout A. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 14150. https://doi.org/10.1039/c4cp01273a
- Achouri M.M., Ziani N., Bouamrane R., Abderrahmane A. // Indian J. Phys. 2018. V. 92. P. 1373. https://doi.org/10.1007/s12648-018-1232-2
- Gale J.D., Rohl A.L. // Mol. Simul. 2003. V. 29. P. 291. http://dx.doi.org/10.1080/ 0892702031000104887
- Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1932. V. 34. P. 485.
- Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076
- Silvestrova I.M., Pisarevskii Y.V, Senycshenkov P.A. et al. // Phys. Status Solidi. А. 1987. V. 101. P. 437. https://doi.org/10.1002/pssa.2211010215
- Ledbetter H., Leisure R.G., Migliori A. et al. // J. Appl. Phys. 2004. V. 96. P. 6201. https://doi.org/10.1063/1.1805717
- Ohmachi Y., Uchida N. // J. Appl. Phys. 1970. V. 41. P. 2307. https://doi.org/10.1063/1.1659223
- Jain H., Nowick A.S. // Phys. Status Solidi. А. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242
- Mezaki R., Margrave J.L. // J. Phys. Chem. 1962. V. 62. P. 66. https://doi.org/10.1021/j100815a037
- Pashinkin A.S., Rabinovich I.B., Sheiman M.S. et al. // J. Chem. Thermodynamics. 1985. V. 17. P. 43. https://doi.org/10.1016/0021-9614(85)90030-8
- Wegener J., Kanert О., Küchler R. et al. // Z. Naturforsch. А. 1994. B. 49. S. 1151. https://doi.org/10.1515/zna-1994-1208
- Wegener J., Kanert O., Küchler R. et al. // Rad. Eff. Defects Solids. 1995. V. 114. P. 277.
- Hartmann E., Kovács L. // Phys. Status Solidi. А. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105
补充文件
