RELATIONSHIP BETWEEN LATTICE PARAMETERS AND CATION RADIUS IN THE HOMOLOGOUS SERIES OF RARE-EARTH OXOFLUORIDES WITH FLUORITE STRUCTURE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The relationship between the lattice parameters and the ionic radii rR of cations in the homologous series of rare earth oxofluorides with the general formula ROF (12R = La–Er, Y) and the fluorite structure (sp. gr. Fm3m) was investigated. It was found that for all ROF compounds the equation (Å) is satisfied: a = 2.365rR + 3.004. The special electronic structure of the Y3+ cation does not lead to deviation from the correlation equation. The obtained equation makes it possible to determine from the structural data for fluorite oxofluorides AnOF (An = Ac, Pu, Cm, Cf) unknown ionic radii of triply charged actinium cations Ac3+ (rAc = 1.24 Å) and actinides Pu3+ (rPu = 1.14 Å), Cm3+ (rCm = 1.10 Å), Cf3+ (rCf = 1.08 Å) for the coordination number 8. Within the framework of the crystallochemical model, the values of the "effective" radii of the fluorine ion (rF = 1.249 ± 0.017), oxygen ion (rO = 1.373 ± 0.005) and the average radius of the anion (rO,F = 1.327 ± 0.009 Å) for fluoride, oxide and oxofluoride compounds with the fluorite structure were refined. The values of rF, rO and rO,F can be used in calculations of the crystallochemical properties of fluorite oxofluoride solid solutions.

作者简介

N. Sorokin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC "Kurchatov Institute"

Email: nsorokin1@yandex.ru
Moscow, Russia

参考

  1. Sobolev B.P. The Rare Earth Trifluorides. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona, Parts 1–2. 2000–2001. 980 p.
  2. Федоров П.П., Соболев Б.П. // Кристаллография. 1992. Т. 37. № 5. С. 1210.
  3. Сорокин Н.И. // Кристаллография. 1990. Т. 35. № 3. С. 791.
  4. Momai M., Tamura S., Imanaka N. // J. Ceram. Soc. Jpn. 2024. V. 132. № 2. P. 55. https://doi.org/10.2109/jcersj2.23155
  5. Momai M., Tamura S., Imanaka N. // Ceram. Int. 2023. V. 49. P. 1502. https://doi.org/10.1016/j.ceramint.2022.10079
  6. Золотова К.Н., Колбанов И.В., Ардашникова Е.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 10. С. 1705.
  7. Jacob K.T., Saji V.S. // Int. J. Appl. Ceram. Technol. 2006. V. 3. № 4. P. 312.
  8. Laval J.P., Taoudi A., Abaouz A. // J. Solid State Chem. 2001. V. 157. P. 134.
  9. Fergus J.W., Chen H.-P. // J. Electrochem. Soc. 2000. V. 147. № 12. P. 469.
  10. Deb K.K., Buser R.G., Morrison C.A. et al. // J. Opt. Soc. Am. 1981. V. 71. № 12. P. 1463.
  11. Осико В.В., Соболь А.А., Тимошечкин М.И. и др. // Тр. ФИАН СССР. 1972. Т. 60. С. 72.
  12. Iwahara H., Esaka T., Takahashi T. // J. Appl. Electrochem. 1984. V. 14. P. 687.
  13. Petzel T., Marx V., Hormann B. // J. Alloys Compd. 1993. V. 200. P. 27.
  14. Niihara K., Yajima S. // Bull. Chem. Soc. Jpn. 1972. V. 45. № 1. P. 20.
  15. Gorbulev V.A., Fedorov P.P., Sobolev B.P. // J. Less-Common Metals. 1980. V. 76. P. 55.
  16. Zachariasen W.H. // Acta Cryst. 1951. V. 4. № 3. P. 231.
  17. Muller J.H., Petzel T. // J. Alloys Compd. 1995. V. 224. P. 8.
  18. Бацанова Л.Р., Кузнецова Г.Н. // Журн. неорган. химии. 1964. Т. 9. № 3. С. 330.
  19. Klemm W., Klein H.A. // Z. Anorg. Allg. Chem. 1941. V. 248. P. 167.
  20. Niihara K., Yajima S. // Bull. Chem. Soc. Jpn. 1971. V. 44. № 3. P. 643.
  21. Фаликман В.Р., Спиридонов Ф.М. // Вестн. МГУ. 1976. № 3. С. 346.
  22. Shannon R.D. // Acta Сryst. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  23. Weigel F., Kohl R. // Am and Cm Chemistry and Technology / Eds. Edelstein N.M. et al. Dordrecht; Boston: Reidel, 1984. P. 159.
  24. Peterson J.R., Burns J.H. // J. Inorg. Nucl. Chem. 1971. V. 33. № 10. P. 2955.
  25. West A.R. Basic Solid State Chemistry. Willey, 1988. 415 p.
  26. Сорокин Н.И. // Кристаллография. 1990. Т. 35. № 3. С. 775.
  27. Соболев Б.П. // Кристаллография. 2020. Т. 65. № 2. С. 173. https://doi.org/10.31857/S0023476120020228
  28. Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. // Вестн. МГУ. Сер. 2. Химия. 2008. Т. 49. № 6. С. 363.
  29. Вайнштейн Б.К. // Современная кристаллография. М.: Наука, 1979. Т. 2. С. 71.
  30. Соболев Б.П., Сульянова Е.А. // Неорган. метериалы. 2025. Т. 61. № 1−2. С. 46. https://doi.org/10.31857/S0002337X25010051

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).