Construction of Models for Elastic Media with the Restricted Normal Components of the Stress Vector
- Авторы: Glushko A.I.1, Neshcheretov I.I.2
- 
							Учреждения: 
							- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Scientific and Engineering Center for Nuclear and Radiation Safety
 
- Выпуск: Том 53, № 6 (2018)
- Страницы: 707-720
- Раздел: Article
- URL: https://journal-vniispk.ru/0025-6544/article/view/163493
- DOI: https://doi.org/10.3103/S0025654418060122
- ID: 163493
Цитировать
Аннотация
It is shown that the medium exhibiting the property of boundedness for normal stresses is hyperelastic, and the constitutive equation of the medium model is a nonlinear relation between the Piola–Kirchhoff and Green–Saint–Venant tensors. For an isotropic medium, it is shown that the stress and strain tensors are coaxial, and a representation of the relation between the stress and strain tensors in the form of elementary functions of a tensor argument is obtained. A geometric proof of the uniqueness of the obtained representation is given.
Об авторах
A. Glushko
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
							Автор, ответственный за переписку.
							Email: anatoly.glushko@yandex.ru
				                					                																			                												                	Россия, 							pr. Vernadskogo 101, str. 1, Moscow, 119526						
I. Neshcheretov
Scientific and Engineering Center for Nuclear and Radiation Safety
							Автор, ответственный за переписку.
							Email: nescheretov@secnrs.ru
				                					                																			                												                	Россия, 							Malaya Krasnoselskaia ul. 2/8, korp. 5, Moscow, 107140						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					