Contact Problem for Inhomogeneous Cylinders with Variable Poisson’s Ratio
- Авторы: Pozharskii D.A.1
- 
							Учреждения: 
							- Don State Technical University
 
- Выпуск: Том 54, № 5 (2019)
- Страницы: 709-716
- Раздел: Article
- URL: https://journal-vniispk.ru/0025-6544/article/view/164159
- DOI: https://doi.org/10.3103/S0025654419050133
- ID: 164159
Цитировать
Аннотация
In cylindrical coordinates, the system of two elastic-equilibrium differential equations is studied under the assumption of axial symmetry and the assumption that the Poisson’s ratio is an arbitrary, sufficiently smooth, function of the radial coordinate and the modulus of rigidity is constant. It turns out that the elastic coefficient is variable with respect to the radial coordinate in this case. We propose a general representation of the solution of this system, leading to the vector Laplace equation and scalar Poisson equation such that its right-hand side depends on the Poisson’s ratio. Being projected, the vector Laplace equation is reduced to two differential equations such that one of them is the scalar Laplace equation. Using the Fourier integral transformation, we construct exact general solutions of the Laplace and Poisson equations in quadratures. We obtain the integral equation of the axially symmetric contact problem on the interaction of a rigid band with an inhomogeneous cylinder and find its regular and singular asymptotic solutions by means of the Aleksandrov method.
Ключевые слова
Об авторах
D. Pozharskii
Don State Technical University
							Автор, ответственный за переписку.
							Email: pozharda@rambler.ru
				                					                																			                												                	Россия, 							Azov, 344002						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					