The Role of Osmolytes and Membrane Lipids in Cold Adaptation in the Psychrophilic Ascomycete Leuconeurospora pulcherrima
- Authors: Danilova O.A.1, Saharova S.A.1, Ianutsevich E.A.1, Kochkina G.A.2, Tereshina V.M.1
-
Affiliations:
- S.N. Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences
- Federal State Budgetary Institution of Science The Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
- Issue: Vol 94, No 6 (2025)
- Pages: 582–593
- Section: EXPERIMENTAL ARTICLES
- URL: https://journal-vniispk.ru/0026-3656/article/view/358316
- DOI: https://doi.org/10.7868/S3034546425060089
- ID: 358316
Cite item
Abstract
Keywords
About the authors
O. A. Danilova
S.N. Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences
Email: noticeifer@mail.ru
Moscow, Russia
S. A. Saharova
S.N. Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of SciencesMoscow, Russia
E. A. Ianutsevich
S.N. Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of SciencesMoscow, Russia
G. A. Kochkina
Federal State Budgetary Institution of Science The Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”Pushchino, Russia
V. M. Tereshina
S.N. Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of SciencesMoscow, Russia
References
- Данилова О.А., Януцевич Е.А., Кочкина Г.А., Гроза Н.В., Терешина В.М. Особенности адаптации к холоду у психротолерантного микромицета Mucor flavus // Микробиология. 2024. Т. 93. С. 385–396. https://doi.org/10.31857/S0026365624040011
- Danilova O.A., Ianutsevich E.A., Kochkina G.A., Groza N.V., Tereshina V.M. Cold adaptation in a psychrotolerant micromycete Mucor flavus // Microbiology (Moscow). V. 93. P. 410‒420.
- Кочкина Г.А., Озерская С.М., Иванушкина Н.Е., Чигинева Н.И., Василенко О.В., Спирина Е.В., Гиличинский Д.А. Разнообразие грибов деятельного слоя Антарктиды // Микробиология. 2014. Т. 83. С. 236–244. https://doi.org/10.7868/S002636561402013X
- Kochkina G.A., Ozerskaya S.M., Ivanushkina N.E., Chigineva N.I., Vasilenko O.V., Spirina E.V., Gilichinskii D.A. Fungal diversity in the Antarctic active layer // Microbiology (Moscow). 2014. V. 83. P. 94–101. https://doi.org/10.1134/S002626171402012X
- Кочкина Г.А., Пинчук И.П., Иванушкина Н.Е., Автух А.Н., Пименов Н.В. Грибы арктических морей // Микробиология. 2024. Т. 93. С. 278–289. https://doi.org/10.31857/S0026365624030039
- Kochkina G.A., Pinchuk I.P., Ivanushkina N.E., Avtukh A.N., Pimenov N.V. Fungi of the Arctic seas // Microbiology (Moscow). V. 93. P. 282‒292. 10.1134/S002626172360502X
- Терёшина В.М., Меморская А.С., Котлова Е.Р. Влияние различных тепловых воздействий на состав мембранных липидов и углеводов цитозоля у мицелиальных грибов // Микробиология. 2011. Т. 80. С. 447–453.
- Tereshina V.M., Memorskaya A.S., Kotlova E.R. The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi // Microbiology (Moscow). 2011. V. 80. P. 455–460. https://doi.org/10.1134/S00262617110 40199
- Януцевич Е.А., Данилова О.А., Грум-Гржимайло О.А., Гроза Н.В., Терёшина В.М. Адаптация ацидофильного гриба Sistotrema brinkmannii к рH фактору // Микробиология. 2023a. Т. 92. С. 279–288. https://doi.org/10.31857/S0026365622600870
- Ianutsevich E.A., Danilova O.A., Grum-Grzhimaylo O.A., Groza N.V., Tereshina V.M. Adaptation of the acidophilic fungus Sistotrema brinkmannii to the pH factor // Microbiology (Moscow). 2023a. V. 92. P. 370‒378. https://doi.org/10.1134/S0026261723600210
- Януцевич Е.А., Данилова О.А., Гроза Н.В., Терешина В.М. Мембранные липиды и углеводы цитозоля у Aspergillus niger в условиях осмотического, окислительного и холодового воздействий // Микробиология. 2016a. Т. 85. С. 283‒292. https://doi.org/10.7868/S0026365616030174
- Ianutsevich E.A., Danilova O.A., Groza N.V., Tereshina V.M. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact // Microbiology (Moscow). 2016a. V. 85. P. 302–310. https://doi.org/10.1134/S0026261716030152
- Ahlgren K., Olsson C., Ermilova I., Swenson J. New insights into the protein stabilizing effects of trehalose by comparing with sucrose // Physic. Chem. Chemic. Phys. 2023. V. 25. P. 21215–21226. https://doi.org/10.1039/d3cp02639f
- Argüelles J.-C., Guirao-Abad J.P., Sánchez-Fresneda R. Trehalose: a crucial molecule in the physiology of fungi // Reference Module in Life Sciences. Elsevier, 2017. P. 1–9. https://doi.org/10.1007/s002030000192
- Arx J.A. von. Notes on Microascaceae with the description of two new species // Persoonia. 1978. V. 10. P. 23–31.
- Bondarenko S.A., Ianutsevich E.A., Danilova O.A., Grum-Grzhimaylo A.A., Kotlova E.R., Kamzolkina O.V., Bilanenko E.N., Tereshina V.M. Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH // Extremophiles. 2017. V. 21. P. 743–754. https://doi.org/10.1007/s00792-017-0940-4
- van den Brink–van der Laan E., Killian J.A., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile // Biochim. Biophys. Acta. Biomembr. 2004. V. 1666. P. 275–288. https://doi.org/10.1016/j.bbamem.2004.06.010
- Brobst K.M. Gas-liquid chromatography of trimethylsilyl derivatives: analisis of corn syrup // General Carbohydrate Method / Eds. Whistler R.L., BeMiller J.N. New York, London: Academic Press, 1972. P. 3–8. https://doi.org/10.1016/B978-0-12-746206-6.50008-4
- Buzzini P., Turchetti B., Yurkov A. Extremophilic yeasts: the toughest yeasts around? // Yeast. 2018. V. 35. P. 487–497. https://doi.org/10.1002/yea.3314
- Cavicchioli R. Cold-adapted archaea // Nat. Rev. Microbiol. 2006. V. 4. P. 331–343. https://doi.org/10.1038/nrmicro1390
- Danilova O.A., Ianutsevich E.A., Bondarenko S.A., Antropova A.B., Tereshina V.M. Membrane lipids and osmolytes composition of xerohalophilic fungus Aspergillus penicillioides during growth on high NaCl and glycerol media // Microbiology (Moscow). 2022. V. 91. P. 503–513. https://doi.org/10.1134/S0026261722601373
- Danilova O.A., Ianutsevich E.A., Kochkina G.A., Tereshina V.M. Adaptation of the psychrophilic Mucor psychrophilus (Mucorales, Mucoromycota) to lower temperatures and under conditions of heat and osmotic shocks // Fungal Biol. 2025. V. 129. Art. 101532. https://doi.org/10.1016/j.funbio.2024.101532
- Elbein A.D., Pan Y.T., Pastuszak I., Carroll D. New insights on trehalose: a multifunctional molecule // Glycobiology. 2003. V. 13. P. 17R‒27R. https://doi.org/10.1093/glycob/cwg047
- Frolov V.A., Shnyrova A.V., Zimmerberg J. Lipid polymorphisms and membrane shape // Cold Spring Harb. Perspect. Biol. 2011. V. 3. № 11. P. a004747–a004747. https://doi.org/10.1101/cshperspect.a004747
- Hoshino T., Matsumoto N. Cryophilic fungi to denote fungi in the cryosphere // Fungal Biol. Rev. 2012. V. 26. P. 102–105. https://doi.org/10.1016/j.fbr.2012.08.003
- Ianutsevich E.A., Danilova O.A., Groza N. V., Kotlova E.R., Tereshina V.M. Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures // Microbiology (Reading). 2016b. V. 162. P. 989–999. https://doi.org/10.1099/mic.0.000279
- Ianutsevich E.A., Danilova O.A., Bondarenko S.A., Tereshina V.M. Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks // Microbiology (Reading). 2021. V. 167. № 11. https://doi.org/10.1099/mic.0.001112
- Ianutsevich E.A., Danilova O.A., Antropova A.B., Tereshina V.M. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock // Fungal Biol. 2023b. V. 127. P. 909–917. https://doi.org/10.1016/J.FUNBIO.2023.01.002
- Ianutsevich E.A., Danilova O.A., Grum-Grzhimaylo O.A., Tereshina V.M. Membrane lipids and osmolytes in the response of the acidophilic basidiomycete Phlebiopsis gigantea to heat, cold and osmotic shocks // Int. J. Mol. Sci. 2024. V. 25. Art. 3380. https://doi.org/10.3390/ijms25063380
- Inouye M., Phadtare S. Cold-shock response and adaptation to near-freezing temperature in cold-adapted yeasts // Science’s STKE. 2004. V. 2004. Iss. 237. https://doi.org/10.1126/stke.2372004pe26
- Kahraman H. Biofilm effect, growth and motility of waste cheese whey (WCW) on bacteria // Biomed. J. Sci. Tech. Res. 2019. V. 20. P. 14822‒14829. https://doi.org/10.26717/bjstr.2019.20.003411
- Kooijman E.E., Chupin V., Kruijff B. de, Burger K.N.J. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid // Traffic. 2003. V. 4. P. 162–174. https://doi.org/10.1034/j.1600-0854.2003.00086.x
- Kosar F., Akram N.A., Sadiq M., Al-Qurainy F., Ashraf M. Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance // J. Plant. Growth Regul. 2019. V. 38. P. 606–618. https://doi.org/10.1007/s00344-018-9876-x
- Kupnik K., Primožič M., Knez Ž., Leitgeb M. Trehalose // Valorization of biomass to bioproducts: biochemicals and biomaterials. Elsevier, 2023. P. 163–207. https://doi.org/10.1016/B978-0-12-822887-6.00012-7
- Malloch D., Sigler L., Hambleton S., Vanderwolf K.J., Gibas C.F.C., McAlpine D.F. Fungi associated with hibernating bats in New Brunswick caves: the genus Leuconeurospora // Botany. 2016. V. 94. P. 1171–1181. https://doi.org/10.1139/cjb-2016-0086
- Marchetta A., Papale M., Rappazzo A.C., Rizzo C., Camacho A., Rochera C., Azzaro M., Urzì C., Giudice A. Lo, Leo F. De A deep insight into the diversity of microfungal communities in Arctic and Antarctic lakes // J. Fungi. 2023. V. 9. Art. 1095. https://doi.org/10.3390/jof9111095
- McMahon H.T., Gallop J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling // Nature. 2005. V. 438. P. 590–596. https://doi.org/10.1038/nature04396
- McMillan S.D., Oberlie N.R., Hardtke H.A., Montes M.M., Brown D.W., McQuade K.L. A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides // Fungal Biol. 2023. V. 127. P. 918–926. https://doi.org/10.1016/j.funbio.2023.01.006
- Melo R.F.R., Maia L.C., Miller A.N. Coprophilous ascomycetes with passive ascospore liberation from Brazil // Phytotaxa. 2017. V. 295. P. 159‒172. https://doi.org/10.11646/phytotaxa.295.2.4
- Morita R.Y. Psychrophilic bacteria // Bacteriol. Rev. 1975. V. 39. P. 144–167. https://doi.org/10.1128/MMBR.39.2.144-167.1975
- Nikitin D.A. Ecological characteristics of Antarctic fungi // Dokl. Biol. Scis. 2023. V. 508. №1. P. 32–54. https://doi.org/10.1134/S0012496622700120
- Palaiokostas M., Ding W., Shahane G., Orsi M. Effects of lipid composition on membrane permeation // Soft Matter. 2018. V. 14. P. 8496–8508. https://doi.org/10.1039/c8sm01262h
- Péter M., Gudmann P., Kóta Z., Török Z., Vígh L., Glatz A., Balogh G. Lipids and trehalose actively cooperate in heat stress management of Schizosaccharomyces pombe // Int. J. Mol. Sci. 2021. V. 22. Art. 13272. https://doi.org/10.3390/ijms222413272
- Pokotylo I., Kravets V., Martinec J., Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants // Prog Lipid Res. 2018. V. 71. P. 43–53. https://doi.org/10.1016/j.plipres.2018.05.003
- Renne M.F., Kroon A.I.P.M. de The role of phospholipid molecular species in determining the physical properties of yeast membranes // FEBS Lett. 2018. V. 592. P. 1330–1345. https://doi.org/10.1002/1873-3468.12944
- Su Y., Jiang X., Wu W., Wang M., Imran Hamid M., Xiang M., Liu X. Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila // G3: Genes, Genomes, Genetics. 2016. V. 6. P. 3603–3613. https://doi.org/10.1534/g3.116.033308
- Tanney J.B., Quijada L. Comments on the occurrence of yeast-like morphologies in Leotiomycetes // Int. J. Syst. Evol. Microbiol. 2021. V. 71. Art. 005141. https://doi.org/10.1099/ijsem.0.005141
- Tapia H., Koshland D.E. Trehalose is a versatile and long-lived chaperone for desiccation tolerance // Curr. Biol. 2014. V. 24. P. 2758–2766. https://doi.org/10.1016/j.cub.2014.10.005
- Tiwari S., Thakur R., Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi // Biotechnol. Res. Int. 2015. V. 2015. Art. 32635. https://doi.org/10.1155/2015/132635
- Turk M., Montiel V., Žigon D., Plemenitaš A., Ramos J. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity // Microbiology (Reading). 2007. V. 153. P. 3586–3592. https://doi.org/10.1099/mic.0.2007/009563-0
- Vigh L., Escribá P.V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horváth I., Harwood J.L. The significance of lipid composition for membrane activity: new concepts and ways of assessing function // Progr. Lipid Res. 2005. V. 44. P. 303–344. https://doi.org/10.1016/j.plipres.2005.08.001
- Wang J., Chen W., Nian H., Ji X., Lin L., Wei Y., Zhang Q. Inhibition of polyunsaturated fatty acids synthesis decreases growth rate and membrane fluidity of Rhodosporidium kratochvilovae at low temperature // Lipids. 2017. V. 52. P. 729–735. https://doi.org/10.1007/s11745-017-4273-y
- Wang M., Jiang X., Wu W., Hao Y., Su Y., Cai L., Xiang M., Liu X. Psychrophilic fungi from the world’s roof // Persoonia. 2015. V. 34. P. 100–112. https://doi.org/10.3767/003158515X685878
- Weinstein R.N., Montiel P.O., Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic // Mycologia. 2000. V. 92. Art. 222. https://doi.org/10.2307/3761554
- Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses // J. Exp. Biol. 2005. V. 208. P. 2819–2830. https://doi.org/10.1242/jeb.01730
- Yusof N.A., Hashim N.H.F., Bharudin I. Cold adaptation strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12 // J. Fungi. 2021. V. 7. Art. 528. https://doi.org/10.3390/jof7070528.
- Zhou H., Huo Y., Yang N., Wei T. Phosphatidic acid: from biophysical properties to diverse functions // FEBS J. 2024. V. 291. P. 1870–1885. https://doi.org/10.1111/febs.16809
- Zhukovsky M.A., Filograna A., Luini A., Corda D., Valente C. Phosphatidic acid in membrane rearrangements // FEBS Lett. 2019. V. 593. P. 2428–2451. https://doi.org/10.1002/1873-3468.13563
Supplementary files


