_ ПОЛУЧЕНИЕ И СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ _ ПРОТИВОМИКРОБНЫХ СРЕДСТВ

УДК 577.152.314:576.08+576.535.5:576.52

РАЗРАБОТКА НОВОГО ИНГИБИТОРА БАКТЕРИАЛЬНОЙ ЦИСТАТИОНИН-ү-ЛИАЗЫ НА ОСНОВЕ 6-БРОМИНДОЛА И АМИНОТИОФЕНА

© 2024 г. Р. А. Новиков^{а, b}, Д. Н. Платонов^b, А. Ю. Белый^b, К. В. Потапов^{а, b}, М. А. Новиков^{а, b}, Ю. В. Томилов^b, О. И. Кечко^a, Т. А. Серегина^a, П. Н. Сольев^{а, *}, В. А. Митькевич^a

^аИнститут молекулярной биологии им. В.А. Энгельгардта Российской академии наук, Москва, 119991 Россия ^bИнститут органической химии им. Н.Д. Зелинского Российской академии наук, Москва, 119991 Россия *e-mail: solyev@gmail.com Поступила в редакцию 20.06.2024 г. После доработки 27.06.2024 г. Принята к публикации 02.07.2024 г.

Цистатионин- γ -лиаза (CSE) – ключевой фермент генерации сероводорода у таких патогенных бактерий, как *Staphylococcus aureus*, *Pseudomonas aeruginosa* и других. Подавление активности CSE значительно усиливает чувствительность бактерий к действию антибиотиков. Нами разработан метод синтеза нового ингибитора CSE индольного ряда — 3-амино-5-[(6-бром-1H-индол-1-ил)метил]тиофена (MNS1). Синтез этого соединения базируется на модификации замещенного тиофена в качестве основного структурного фрагмента, который на финальных стадиях вовлекается в алкилирование 6-броминдола. Константа диссоциации комплекса MNS1 с *Sa*CSE (цистатионин- γ -лиаза *S. aureus*) составляет 0.5 мкМ, что на порядок ниже, чем для CSE человека (hCSE). Показано, что соединение MNS1 эффективно усиливает антибактериальное действие гентамицина на клетки *Bacillus subtilis*, что предполагает его использование в качестве потенциатора антибиотиков для подавления роста бактериальных клеток, экспрессирующих CSE.

Ключевые слова: цистатионин- γ -лиаза, SaCSE, соединения индольного ряда, потенциатор антибиотика, гентамицин. *Bacillus subtilis*

DOI: 10.31857/S0026898424060083, EDN: IAYTTU

ВВЕДЕНИЕ

Важнейшим открытием XX века в области медицинской химии стали антибиотики, разработка которых помогла спасти миллионы жизней от смертельных инфекций. Появление антибиотиков позволило существенно снизить смертность от бактериальных инфекций, увеличило среднюю продолжительность жизни более чем на 30 лет, сократило риски, возникающие при хирургических вмешательствах, и способствовало устойчивому развитию сельскохозяйственного производства. Однако на рубеже XX и XXI века "золотая эра" антибиотиков закончилась и внимание ученых и клиницистов переключилось на серьезную проблему, возникшую в результате

повсеместного применения этих препаратов, — на выработавшуюся антибиотикорезистентность штаммов бактериальных патогенов. Назревающая угроза от резистентных патогенов, известных как ESKAPE (аббревиатура от Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, и Enterobacter spp.), и отсутствие новых классов антибиотиков за последние 60 лет требует развития новых стратегий терапии [1]. В числе активно развивающихся подходов — разработка терапии потенциаторами антибиотиков, действие которых направлено на ингибирование ферментов, вовлеченных в биосинтез сероводорода. Мишенями в комбинированной терапии с использованием

известных классов антибиотиков для потенциаторов могут служить белки, не критичные для нормального жизненного цикла бактерии, но активно участвующие в процессе инфицирования клеток и отвечающие за возникновение бактериальной вирулентности. Одной из таких мишеней для действия потенциаторов антибиотиков считается фермент метаболизма сероводорода — бактериальная цистатионин-ү-лиаза (CSE). Ингибирование активности CSE не блокирует рост бактерий, но полавляет их способность приспосабливаться к известным антибиотикам и продуцировать сероводород, защищающий бактерию от окислительного стресса. Недавно в результате in silico и in vitro скринингов показано, что можно подобрать ряд ингибиторов на основе 6-броминдола (NL1, NL2 и NL3), селективно подавляющих бактериальный вариант этого фермента из CSE S. aureus (SaCSE) и P. aeruginosa (PaCSE) [2]. Возможность применения этих соединений в роли потенциаторов для многократного усиления действия антибиотиков на патогенные бактерии, включая штаммы, обладающие высокой резистентностью к действию известных противомикробных препаратов, позволяет считать потенциаторы перспективным, но все еще мало изученным классом фармакологически значимых соединений.

В результате проведенного исследования мы расширили класс 6-броминдолсодержащих соединений новым представителем, названным MNS1, и проанализировали его связывание с CSE бактериального происхождения (SaCSE) и человека (hCSE), а также эффективность MNS1 как потенциатора гентамицина в отношении штамма B. subtilis 168 и ингибитора H_2 S-генерирующей активности этой бактерии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. Реагенты и растворители были приобретены у "Sigma-Aldrich" (США), "Acros Organics" (США), "J&K Scientific" (США), "TCI Europe" (Бельгия), "Macklin" (Китай) со степенью чистоты не ниже 98% и использованы без дополнительной очистки, если иное не указано.

Оборудование. Для тонкослойной хроматографии (TCX) использовали пластины Silufol ("Avalier", Чехия) и KieselGel F_{254} ("Merck", Германия), колоночную хроматографию проводили на Silica Gel 60 (0.040-0.063 mm) ("Merck").

ЯМР-спектры регистрировали на спектрометрах AVANCE II 300 ("Bruker Corporation", США) с рабочей частотой 300.1 МГц и 75.5 МГц для ядер 1 Н и 13 С соответственно, а также AMX III 400 ("Bruker Corporation") с рабочей частотой 400.1 МГц и 100.6 МГц для ядер 1 Н и 13 С соответственно. Для анализа образцов исполь-

зовали $CDCl_3$ с 0.05% Me_4Si в качестве внутреннего стандарта и $DMSO-d_6$.

Масс-спектры высокого разрешения регистрировали на гибрид-квадрупольном времяпролетном приборе micrOTOF-Q II ("Bruker Daltonics GmbH & Co. KG", Германия) методом электрораспылительной ионизации (ESI). Измерения выполняли на положительных ионах, образцы подавали в распылительную камеру масс-спектрометра через жидкостной хроматограф Agilent 1260 Infinity ("Agilent Technologies", США) по стандартной методике [3].

Синтез 3-амино-5-[(6-бром-1*H*-индол-1-ил)метил]тиофена (MNS1). Синтез проводили на стандартном лабораторном оборудовании по разработанным ниже методикам.

Метил 3-аминотиофен-2-карбоксилат (1). К раствору метилата натрия, полученному при растворении металлического натрия (2.6 г, 113.0 моль) в 50 мл метанола, при охлаждении на водяной бане, по каплям добавляли метилтиогликолят (5.3 г. 49.9 ммоль) и затем раствор 2-хлоракрилонитрила (4.4 г, 49.9 ммоль) в 5 мл метанола. Полученную смесь перемешивали 2 ч, после чего отгоняли в вакууме 2/3 первоначального объема метанола из реакционной смеси, а остаток разбавляли водой (30 мл) и экстрагировали Еt₂O $(3 \times 30 \text{ мл})$. Органические фракции объединяли, сушили над Na₂SO₄ и упаривали в вакууме. Продукт очищали перекристаллизацией из гексана. Соединение 1 получено в виде желтых кристаллов (4.7 г., выход 61%). ¹Н ЯМР (300 МГц, CDCl₃), δ : 7.27 (д, J = 8.0 Гц, 1H), 6.54 (д, J = 8.0 Гц, 1H) 5.44 (уш.с., 2H), 3.83 (с, 3H). ¹³С ЯМР (75 МГц, CDCl₃), δ : 165.1, 154.0, 131.4, 119.8, 101.2, 51.3. Масс-спектр $C_6H_7NO_2S$, m/z: для $[M+H]^+$ рассчитано 158.0270, получено 158.0274; рассчитано для $[2M+H]^+$ 315.0468, получено 215.0477.

Метил 3-[(трет-бутоксикарбонил)амино] тиофен-2-карбоксилат (2). К раствору 1 (2.0 г, 12.7 ммоль) в СН₂Сl₂ добавляли Вос₂О (4.1 г, 18.8 ммоль) и п-диметиламинопиридин (77 мг, 0.63 ммоль). Реакционную массу перемешивали 3 ч и упарили в вакууме досуха. Остаток растворяли в ЕtOAc и последовательно промывали насыщенными растворами NaHCO₃, лимонной кислоты и NaCl. Органический слой сушили над Na₂SO₄ и упаривали в вакууме. Продукт получен в виде желтых кристаллов (2.42 г, выход 74%) и использован на следующей стадии без дополнительной очистки и анализа физико-химических свойств.

Метил 3-[(*тем*-бутоксикарбонил)амино]-5-формилтиофен-2-карбоксилат (3). К раствору диизопропиламина (11.9 г, 117 ммоль) в 50 мл абсолютированного ТНF в атмосфере аргона, при температуре смеси не выше -50° С добавляли

по каплям 2.5 М раствор бутиллития в гексане (42) мл, 104 ммоль). К полученному раствору, охлажденному до -78°C, добавляли раствор соединения **2** (8.4 г, 32.7 ммоль) в 30 мл ТНГ. Реакционную смесь перемешивали 45 мин при -78° С, после чего добавляли к ней абсолютированный DMF (12.0 г, 118 ммоль), удерживая температуру раствора ниже -65°C. Смесь выдерживали 15 мин при -78° С, после чего нагревали до -30° С и обрабатывали водным раствором 6 М соляной кислоты (36.8 мл, 221 ммоль). После стабилизации температуры к суспензии добавляли воду – до полного растворения LiCl. Органическую фазу отделяли, промывали насыщенным раствором NaCl (3 × \times 50 мл), сушили над Na₂SO₄ и упаривали в вакууме. Соединение 3 очищали кристаллизацией из метанола, получали светло-желтые кристаллы (6.8 г, выход 73%). 1 H ЯМР (300 МГц, CDCl₃), δ : 9.94 (c, 1H), 9.27 (c, 1H), 8.55 (c, 1H), 3.92 (c, 3H), 1.54 (c, 9H). ¹³С ЯМР (75 МГц, CDCl₃), δ: 183.8, 164.4, 152.0, 145.4, 145.0, 128.6, 114.8, 81.8, 52.5, 28.3. Масс-спектр $C_{12}H_{15}NO_5S$, *m/z*: рассчитано для [М+Н] + 286.0744, получено 286.0747.

<u> Метил-3-[(*трет-бутоксикарбонил*)ами-</u> но]-5-(гидроксиметил)тиофен-2-карбоксилат (4). При 0°С к суспензии соединения 3 (9.67 г. 33.9 ммоль) в смеси 250 мл этанола и 250 мл воды добавляли боргидрид натрия (0.62 г, 16.3 ммоль). Смесь перемешивали 1 ч при 0°С и 1 ч при комнатной температуре, после чего в течение 2 ч двумя порциями добавляли еще боргидрид натрия (0.62 г, 16.3 ммоль). Полученную суспензию перемешивали при комнатной температуре 1 ч, после чего разбавляли 500 мл воды. Смесь экстрагировали этилацетатом (2×250 мл). Органические слои объединяли, сушили над MgSO₄ и упаривали в вакууме. Соединение 4 получали в виде желтых кристаллов (9.35 г, выход 96%). ¹Н ЯМР (300 MΓ_{II}, CDCl₃), δ: 9.31 (c, 1H), 7.78 (c, 1H), 4.80 (c, 2H), 3.86 (c, 3H), 1.51 (c, 9H). ¹³C ЯМР (75 МГ_{II}, CDCl₃), δ : 164.7, 152.2, 151.1, 145.4, 118.6, 107.3, 81.3, 60.7, 51.8, 28.3. Масс-спектр $C_{12}H_{17}NO_5S$, m/z: рассчитано для $[M+H]^+$ 288.0900, получено 288.0906.

Метил-5-(бромметил)-3-[(трет-бутоксикар-бонил)амино]тиофен-2-карбоксилат (5). К раствору соединения **4** (5.89 г, 20.5 ммоль) и трифенилфосфина (6.47 г, 24.6 ммоль) в 50 мл CH_2Cl_2 при 0°С небольшими порциями добавляли CBr_4 (8.19 г, 24.6 ммоль). Реакционную массу перемешивали 30 мин при 0°С и 2 ч при комнатной температуре. Растворитель упаривали в вакууме. Продукт экстрагировали из твердого остатка смесью Et_2O и гексана (1:1). Органические соли объединяли, пропускали через слой силикагеля и упаривали в вакууме. Получали 5.74 г соединения **5** в виде белого порошка (выход 80%). ¹Н ЯМР (300 МГц, $CDCl_3$), δ : 9.29 (c, 1H), 7.94 (c, 1H), 4.59 (c, 1H), 3.86 (c, 3H), 1.51 (c, 9H). Масс-спектр

 $C_{12}H_{16}BrNO_4S$, *m/z*: рассчитано для $[M+H]^+$ 350.0056, получено 350.0059.

Метил 5 - [(6 - 6pom - 1H - индол - 1 - ил) метил]-3-[(трет-бутоксикарбонил)амино]тиофен-2-карбоксилат (6). К раствору 6-броминдола (1 г, 5.1 ммоль) в 18 мл абсолютированного DMF при 0° С добавляли гидрид натрия (204 мг, 60%-ная дисперсия в масле; 5.1 ммоль). Смесь перемешивали при комнатной температуре до прекращения выделения водорода в течение 2 ч. К полученному раствору добавляли раствор соединения 5 (1.61 г. 4.6 ммоль) в 2 мл абсолютизированного DMF. Peакционную массу выдерживали при 0°С в течении 24 ч, после чего разбавляли 100 мл воды. Смесь экстрагировали ÉtOAc (3×50 мл), органические слои объединяли, промывали водой (3 × 50 мл) и насыщенным раствором NaCl (3 × 50 мл), сушили над Na₂SO₄ и упаривали в вакууме. Вещество очищали методом колоночной хроматографии на силикагеле, используя толуол в качестве элюента. Получено 856 мг соединения 6 в виде желтоватого масла (выход 40%). ¹Н ЯМР ($300 \text{ М}\Gamma\text{ц}$, DMSO- d_6), δ: 9.20 (c, 1H), 7.83 (c, 2H), 7.72 (c, 2H), 7.63–7.45 (м, 3H), 7.20–7.14 (м, 1H), 6.54 (д, J = $= 3.3 \, \Gamma \text{H}, 2 \text{H}, 5.69 \, (\text{c}, 3 \text{H}), 3.74 \, (\text{c}, 3 \text{H}), 1.46 \, (\text{c}, 9 \text{H}).$ Масс-спектр $C_{20}H_{21}BrN_2O_4S$, m/z: рассчитано для $[M+H]^+$ 465.0478, получено 465.0481.

<u>5-[(6-бром-1*H*-индол-1-ил)метил]тио-</u> фен-3-амин гидрохлорид (7, MNS1). К раствору NaOH (19 мг, 0.475 ммоль) в 2 мл метанола и 0.2 мл воды добавляли соединение 6 (146 мг, 0.314 ммоль). Полученную смесь кипятили 8 ч, после чего охлаждали, подкисляли водным раствором соляной кислоты (24 мкл, 0.942 ммоль) и перемешивали еще в течение 1 ч. Образовавшийся осадок NaCl отфильтровали, фильтрат упаривали и высущивали в вакууме. Продукт 7 выделен в виде коричневого порошка (96 мг, выход 89%). ¹H ЯМР (300 МГц, DMSO-*d*₆), δ: 7.87–7.73 (м, 1H), 7.59–7.37 (M, 2H), 7.20–7.11 (M, 1H), 6.78–6.68 (M, 1H), 6.54–6.47 (M, 1H), 5.81 (μ , μ), 6.55 (c, 2H), 4.79 (μ), 6.55 (c, 2H), 4.79 (μ), 6.55, 136.9, 130.2, 127.8, 122.6, 127.8 122.5, 120.9, 120.7, 114.5, 113.4, 95.7, 44.8. Масс-спектр $C_{13}H_{11}BrN_2S$, m/z: рассчитано для $[M+H]^+$ 306.9899, получено 306.9900.

Экспрессия и очистка ферментов. Сверхэкспрессию полноразмерных SaCSE (КФ 4.4.1.1 — цистатионин-γ-лиаза Staphylococcus aureus) и hCSE (КФ 4.4.4.1 — цистатионин-γ-лиаза человека) в клетках Escherichia coli проводили с использованием экспрессионных векторов, любезно предоставленных д-ром Е. Нудлером (Dr. Evgeny Nudler, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, США), и по описанным ранее методикам [2]. Экспрессию гена, кодирующего CSE с тегом Ніз₁₀-SUMO на N-конце, индуцировали 0.2 мМ

изопропил-β-D-1-тиогалактопиранозидом (IPTG), культуру выращивали в течение 5 ч при 37°C. Клетки собирали центрифугированием и ресуспендировали в буфере для лизиса, содержащем 20 мМ трис-HCl, pH 8.0, 0.5 M NaCl, 5 мМ имидазола, 5 мМ В-меркаптоэтанола (В-МЭ) и ингибитор протеазы фенилметилсульфонил фторид (PMSF) ("Sigma-Aldrich"), и обрабатывали ультразвуком. Полученный лизат осветляли центрифугированием. Супернатант наносили на колонку HisTrap FF объемом 5 мл ("GE Healthcare", США), колонку промывали буфером для лизиса, а целевой белок элюировали тем же буфером с концентрацией имидазола 0.25 М. Фракции, содержащие целевой белок, объединяли и метку His₁₀-SUMO снимали рекомбинантной SUMO-протеазой ULP1, меченной His₆ ("Servicebio", Китай), при 4°С в течение 14–16 ч. Реакционную смесь диализовали против буфера, содержащего 20 MM τρис-HCl, pH 8.0, 0.05 M NaCl, 5 MM β-ME, после чего протеазу ULP1-His₆ и отщепленный тег His₁₀-SUMO удаляли методом аффинной хроматографии на колонке HisTrap FF. Полученные фракции CSE концентрировали и очищали гель-фильтрацией на колонке Superdex 200 ("GE Healthcare") в 20 мМ трис-HCl, pH 8.0, 0.1 M NaCl и 5 мМ β-MÉ и хранили при 4°C для немедленного использования. Для длительного хранения небольшие аликвоты белка замораживали в жидком азоте и хранили при -80° С.

Определение аффинности связывания CSE с потенциальными ингибиторами. Константы диссоциации (K_d) комплексов $\bar{S}a$ CSE и hCSE с ингибиторами определяли методом изотермической калориметрии титрования (Isothermal Titration Calorimetry; ITC) с использованием MicroCal PEAQ-ITC ("Malvern Panalytical", Великобритания), как описано ранее [4]. Эксперименты проводили при 25°C в буфере, содержащем 20 мМ Tris-HCl (pH 8.0), 100 MM NaCl, 1 MM DTT, 20% глицерина. Аликвоты (2.5 мкл) исследуемых соединений (MNS1 и NL2) добавляли в калориметрическую ячейку объемом 200 мкл до получения полной изотермы связывания. Концентрацию CSE в калориметрической ячейке варьировали в пределах 10-25 мкМ, а концентрацию лигандов в титрующем шприце – от 100 до 250 мкМ. Теплоту разбавления определяли титрованием не содержащего фермент буфера раствором лиганда, после чего изотерму разбавления вычитали из изотермы связывания, а полученную кривую обрабатывали и анализировали с помощью программного пакета MicroCal PEAQ-ITC с использованием модели одного типа сайтов связывания.

Определение минимальной концентрации гентамицина, ингибирующей рост клеток *B. subtilis*. Стандартизированные минимальные ингибирующие концентрации (МИК) определяли методом микроразведений, в соответствии с рекомендациями Clinical & Laboratory Standards Institute (CLSI) [5]. Готовили серийные двукратные разведения

анализируемого антибиотика в 100 мкл лизогенной среды (LB; "Sigma-Aldrich") с добавлением тестируемого CSE в концентрации 50 мкМ. Инокулят B. subtilis готовили в объеме 100 мкл LB в разведении 1.0×10^6 KOE/мл. За МИК принимали самую низкую концентрацию антибиотика, предотвращающую помутнение инокулята после 24 ч инкубации при 37°C. В последующих экспериментах использовали гентамицин в концентрации 0.1 мкг/мл (10% МИК).

Анализ гентамицинпотенцирующей активности MNS1 и NL2 на клетках *B. subtilis*. Кривые роста *B. subtilis* получали с помощью автоматизированной системы анализа роста Bioscreen C ("Oy Growth Curves Ab Ltd.", Финляндия). Клетки *B. subtilis* 168 растили в среде LB при 37°C в течение ночи, разбавляли свежей средой (1 : 100), содержащей антибиотик и исследуемое соединение, как описано в тексте и в подписях к рисункам. По 150 мкл каждой смеси вносили в лунки в трех повторах и инкубировали при 37°C при постоянном перемешивании. Значения оптической плотности при длине волны 600 нм (OD₆₀₀) регистрировали автоматически в течение 24 ч.

На временных графиках роста бактериальных клеток результаты представлены как средние, рассчитанные на основании трех независимых экспериментов.

Анализ генерации сероводорода клетками **B.** subtilis. Мониторинг продукции H_2S клетками B. subtilis проводили по описанной ранее методике с использованием ацетата свинца в качестве детектора [6]. К внутренней стенке культурального флакона, выше уровня жидкой культуры бактерий, прикрепляли бумажные полоски, пропитанные 2%-ным водным раствором Рb(OAc)₂. Ночные культуры разбавляли средой LB (1:50) и инкубировали в течение 16-18 ч при 37°C с аэрацией. Концентрация анализируемых соединений (MNS1 и NL2) составляла 32 мкМ, в качестве отрицательного контроля использовали среду LB без добавок. Окрашенные бумажные полоски сканировали с помощью гель-документирующей системы AlphaImager ("BioTechne", США). Результаты нормализовали на оптическую плотность культуры.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В продолжении работ группы Е. Нудлера [2] нами недавно разработаны и реализованы методики синтеза в граммовых количествах основных наиболее активных ингибиторов SaCSE: NL1, NL2, NL3 [7, 8]. В ходе проведенных биологических испытаний авторы обнаружили, что наиболее активным ингибитором SaCSE в этом ряду было соединение NL2 — 5-[(6-бром-1H-индол-1-ил)метил]-2-метилфуран-3-карбоновая кислота [2]. Перспективным

представляется получение аналога NL2 с тиофеновым заместителем вместо фуранового цикла. В результате нами был синтезирован и протестирован в роли ингибитора SaCSE вариант тиофенсодержащего производного, названный MNS1.

Синтез MNS1

Для синтеза потенциального ингибитора CSE был разработан новый путь: по линейной схеме с использованием в качестве ключевого соединения метил-3-аминотиофен-2-карбоксилата (1), синтезированного нами по описанной ранее методике [9] из хлоракрилонитрила и этилового эфира тиогликолевой кислоты (рис. 1). Для предотврашения в холе лальнейшего синтеза возможных побочных процессов, из-за наличия в структуре соединения 1 реакционноспособной NH₂-группы, возникла необходимость выбора подходящей зашитной группы. Благодаря относительно высокой стабильности, а также простоте в постановке и последующем снятии, в качестве такой группы было решено использовать трет-бутоксикарбонильную (Вос). Реакцию проводили в стандартных условиях: под действием Вос₂О в присутствии 4-диметиламинопиридина (DMAP) в качестве основания; в результате получали 3-[(трет-бутоксикарбонил) амино тиофен-2-карбоксилат (2).

Полученный Вос-защищенный аминотиофен 2 вводили в реакцию α-литирования диизопропиламидом лития (LDA), с последующим формилированием полученного соединения 3.

(5-Бромметил)-3-[(трет-бутоксикарбонил)амино]тиофен-2-карбоксилат (5), необходимый для алкилирования 6-броминдола, получали по классической двухстадийной схеме, включающей восстановление альдегидной группы в соединении 3 боргидридом натрия и обмен гидроксильной группы промежуточного спирта 4 на бром по реакции Аппеля. Далее при сочетании полученного бромида 5 с 6-броминдолом в присутствии гидрида натрия в качестве основания был получен ключевой предшественник целевого аминотиофена — соединение 6.

Аминотиофен 7 был получен в результате двухстадийного процесса, включающего щелочной гидролиз сложноэфирной группы с промежуточным образованием натриевой соли карбоновой кислоты, которая при последующем подкислении реакционной массы водным раствором HCl сначала превращается в соответствующую кислоту, а затем немедленно декарбоксилируется. Одновременно с этим происходит катализируемое кислотой снятие Вос-защиты с образованием целевого соединения 7 в виде гидрохлорида (рис. 1).

Взаимодействие MNS1 с SaCSE и hCSE

Финальный продукт 7 (MNS1) анализировали как потенциальный ингибитор ферментативной активности CSE. Так, определены значения констант диссоциации (K_d) для комплексов бактериальной CSE (SaCSE) и CSE человека (hCSE) с соединением MNS1 и NL2 — наиболее эффективным

Рис. 1. Схема синтеза гидрохлорида 3-амино-5-[(6-бром-1H-индол-1-ил)метил]тиофена (MNS1). Обозначения: MeONa — метилат натрия, Boc — *трет*-бутилоксикарбонил, DMAP — 4-диметиламинопиридин, DMF — диметил-формамид, LDA — диизопропиламид лития, THF — тетрагидрофуран, rt — комнатная температура, Δ — кипячение.

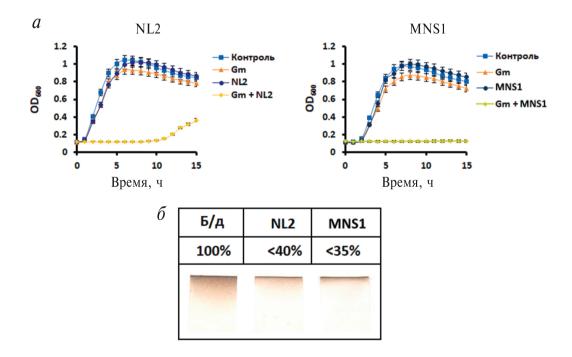

ингибитором SaCSE, выявленным ранее [2]. Как видно из результатов, представленных в табл. 1, аффинность MNS1 к SaCSE практически в два раза выше, чем к NL2. Индекс селективности (SI) связывания MNS1 с hCSE и SaCSE (определяемый как отношение значений $K_{\rm d}$ для этих комплексов) составлял 19.7, в то время как в случае NL2-14.1. Таким образом, соединение MNS1 по селективности действия в отношении SaCSE превосходит NL2. Следовательно, в случае применения MNS1 в качестве антибактериального средства его потенциально негативное действие, обусловленное нарушением hCSE-зависимого биосинтеза цистеина в организме человека, будет менее вероятно, чем для NL2.

Таблица 1. Константы диссоциации (K_d) комплексов SaCSE и hCSE с MNS1 и NL2, определенные методом изотермической калориметрии титрования (ICT)

Фермент	Соединение	K_{d} , мк M
SaCSE	MNS1	0.59 ± 0.04
	NL2	1.09 ± 0.04
hCSE	MNS1	11.6 ± 0.1
	NL2	15.4 ± 2.7

Оценка эффективности MNS1 в роли потенциатора гентамицина в отношении B. subtilis

Ингибирующую активность соединения MNS1 анализировали на культуре клеток B. subtilis 168. Этот микроорганизм был выбран нами на основании данных о высокой гомологии строения активного центра SaCSE среди различных видов бактерий [10]. В качестве положительного контроля использовали описанный ранее CSE-ингибитор NL2 [2]. Потенцирующее действие исследуемых ингибиторов оценивали с помощью стандартного анализа МИК. В ходе экспериментов были определены минимальные концентрации NL2 и MNS1, оказывающие максимальный потенцирующий эффект в присутствии гентамицина в концентрации 0.1 мкг/мл (10% МИК). Вещества не обладают токсическим действием на клетки B. subtilis в используемом диапазоне концентраций. Синтезированное нами соединение MNS1 обладает более выраженным потенцирующим действием в сравнении с NL2 при используемой концентрации 50 мкМ (рис. 2). В отличие от NL2, в экспериментах с MNS1 не наблюдалось возобновления роста культуры клеток по прошествии 10 ч инкубации (рис. $2\hat{a}$). Кроме того, соединение

Рис. 2. Сравнительный анализ NL2 и MNS1 как потенциаторов гентамицина в отношении штамма *B. subtilis* 168. a – Репрезентативные кривые роста штамма *B. subtilis* 168 в присутствии 0.1 мкг/мл гентамицина (Gm), а также 50 мкМ NL2 или MNS1. Клетки растили при 37°C с аэрацией в автоматизированной системе анализа роста Bioscreen C. Результаты представлены как средние значения \pm стандартное отклонение, рассчитанные на основании трех повторов в одном эксперименте. δ — Анализ генерации H_2S клетками *B. subtilis* 168 в присутствии NL2 и MNS1. На пропитанных 2%-ным раствором ацетата свинца полосках фильтровальной бумаги появляется коричневое окрашивание, вызванное образованием соли PbS в результате испарения H_2S бактериальной суспензией. Цифрами указаны изменения в продукции H_2S относительно контрольных клеток.

MNS1 более эффективно подавляло генерацию сероводорода клетками *B. subtilis* (рис. 26).

Бактериальная цистатионин-ү-лиаза – ключевой фермент метаболизма H₂S, один из основных кандидатов-мишеней для поиска ингибиторов с целью создания комбинированной терапии "антибиотик + потенциатор". Нами разработан метод синтеза соединения индольного ряда — 3-амино-5-[(6-бром-1*H*-индол-1-ил)метил]тиофена(MNS1)-, и продемонстрирован его потенциал как ингибитора H₂S-генерирующей активности бактерий на примере B. subtilis. Показано, что MNS1 эффективнее связывается бактериальным ферментом SaCSE (из S. aureus), чем присущим человеку (hCSE), и по селективности (SaCSE/ hCSE) превосходит ранее описанные ингибиторы NL1-NL3. Кроме того, продемонстрировано, что MNS1 усиливает антибактериальное действие гентамицина на клетки B. subtilis. Таким образом, синтезированное нами соединение MNS1 может стать основой для дизайна новых потенциаторов антибиотиков для подавления роста бактериальных клеток, экспрессирующих CSE.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (контракт в системе "Электронный бюджет" № 075-10-2021-113, ID проекта: RF----193021X0001).

Настоящая статья не содержит каких-либо исследований с использованием людей или животных в качестве объектов.

Авторы сообщают об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Miller W.R., Arias C.A. (2024) ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. *Nat. Rev. Microbiol.* 22(10), 598–616. https://doi.org/10.1038/s41579-024-01054-w

- 2. Shatalin K., Nuthanakanti A., Kaushik A., Shishov D., Peselis A., Shamovsky I., Pani B., Lechpammer M., Vasilyev N., Shatalina A., Rebatchouk D., Mironov A., Fedichev P., Serganov A., Nudler E. (2021) Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. *Science*. 372, 1169–1175.
- 3. Solyev P.N., Isakova E.B., Olsufyeva E.N. (2023) Antibacterial conjugates of kanamycin A with vancomycin and eremomycin: biological activity and a new MS-fragmentation pattern of Cbz-protected amines. *Antibiotics.* **12**, 894.
- Mariasina S.S., Chang C.F., Petrova O.A., Efimov S.V., Klochkov V.V., Kechko O.I., Mitkevich V.A., Sergiev P.V., Dontsova O.A., Polshakov V.I. (2020) Williams—Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage. *FEBS J.* 287, 5375—5393.
- Clinical and Laboratory Standards Institute. (2015) Method for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard, 10th edition. CLSI document M07–A10. National Committee for Clinical and Laboratory Standards, Wayne PA.
- 6. Forbes B.A. (1998) *Bailey and Scott's Diagnostic Microbiology*, 10th edition. St. Louis, MO: Mosby, 1069 p.
- Potapov K.V., Novikov R.A., Novikov M.A., Solyev P.N., Tomilov Y.V., Kochetkov S.N., Makarov A.A., Mitkevich V.A. (2023) Synthesis of the indole-based inhibitors of bacterial cystathionine γ-lyase NL1–NL3. *Molecules.* 28, 3568.
- Novikov M.A., Potapov K.V., Novikov R.A., Solyev P.N., Tomilov Y.V., Kochetkov S.N., Makarov A.A., Mitkevich V.A. (2024) A convenient synthesis of a chlorobenzothiophenyl-indole-based inhibitor of bacterial cystathionine γ-lyase. *Mendeleev Commun.* 34, 255–258.
- 9. Huddleston P. R., Barker J. M. (1979) A convenient synthesis of 2-substituted 3-hydroxy- and 3-aminothiophens from derivatives of 2-chloroacrylic acid. *Synthetic Commun.* **9**, 731–734.
- Pedretti M., Fernández-Rodríguez C., Conter C., Oyenarte I., Favretto F., di Matteo A., Dominici P., Petrosino M., Martinez-Chantar M.L., Majtan T., Astegno A., Martínez-Cruz L.A. (2024) Catalytic specificity and crystal structure of cystathionine γ-lyase from *Pseudomonas aeruginosa*. Sci. Rep. 14, 9364.

Development of a New Inhibitor of Bacterial Cystathionine γ -Lyase

Based on 6-Bromoindole and Aminothiophene

R. A. Novikov^{1, 2}, D. N. Platonov², A. Yu. Belyy², K. V. Potapov^{1, 2}, M. A. Novikov^{1, 2}, Yu. V. Tomilov², O. I. Kechko¹, T. A. Seregina¹, P. N. Solyev^{1, *}, V. A. Mitkevich¹

¹Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia ²Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia *e-mail: solyev@gmail.com

Cystathionine γ -lyase (CSE) is a key enzyme for the H₂S generation in such pathogenic bacteria as *Staphylo-coccus aureus*, *Pseudomonas aeruginosa*, etc. Suppression of CSE activity significantly increases the sensitivity of bacteria to the action of antibiotics. Here, we present a method for the synthesis of a novel indole-based

CSE inhibitor, 3-amino-5-[(6-bromo-1H-indol-1-yl)methyl]thiophene, named MNS1. The synthesis of this compound is based on the modification of substituted thiophene as the main structural fragment, which is involved the alkylation of 6-bromoindole at the final stages. The dissociation constant of the MNS1 complex with bacterial CSE (from S. aureus, SaCSE) was 0.5 μ M, which was an order of magnitude lower than that for human CSE (hCSE). The MNS1 compound was shown to effectively enhance the antibacterial effect of gentamicin against Bacillus subtilis, allowing it to be used as an antibiotic potentiator, to inhibit the growth of CSE-expressing bacterial cells.

Keywords: cystathionine γ -lyase, SaCSE, indole compounds, antibiotic potentiator, gentamycin, Bacillus subtilis