Mechanism of Bimodal Effect of DL-Butyonine Sulfoximine of Constitutive Androstane and Pregnane X Receptors in vitro

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The constitutive androstane receptor (CAR) and the pregnan X receptor (PXR) are nuclear receptors that are involved in the regulation of gene transcription of enzymes responsible for biotransformation and excretion of endo- and xenobiotics. The aim of the study was to study the effect of DL-butyonine sulfoximine (BSO, gamma-glutamylcysteine synthetase inhibitor) on the relative amount of CAR and PXR in Caco-2 cells and to evaluate its mechanisms. BSO was used in concentrations of 1‒500 μM and exposure duration of 24 and 72 h. The generation of reactive oxygen species (ROS) was determined using MitoTracker Red CM-H2 XRos fluorescent probes. Cytotoxicity was analyzed according to the results of the MTT test. The relative amount of CAR and PXR was estimated by the Western blot method. It was shown that BSO caused an increase in the formation of ROS at exposure duration of 24 h at concentrations of 10, 50 and 100 μM, at 72 h – at concentrations of 50, 100 μM. At the same time, at a concentration of 500 μM, BSO reduced the viability of cells during all periods of exposure. The relative amount of CAR increased at BSO concentrations of 50, 100 μM and exposure duration of 24 hours and 10, 50 μM at exposure of 72 h, and PXR – at concentrations of 100 and 500 μM and incubation of 24 h and 50, 100, 500 μM and incubation of 72 h. When used together with BSO, glutathione, the synthesis of which it blocks, it was found that at exposure time of 24 h and BSO concentrations of 50 μM and 72 h and concentrations of 10 and 50 μM, CAR induction was suppressed, and at 50 and 100 μM and exposure time of 72 h – PXR. The introduction of glutathione into the nutrient medium with BSO had no effect on PXR at xenobiotic concentrations of 100 and 500 μM (24 h) and 500 μM (72 h), on CAR – at concentrations of 100 μM (24 h) and 50 and 100 μM (72 h). Thus, BSO can induce CAR and PXR both by increasing the production of free radicals and the development of oxidative stress, and independently as a xenobiotic.

About the authors

Y. V. Abalenikhina

Ryazan State Medical University

Author for correspondence.
Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

A. V. Shchulkin

Ryazan State Medical University

Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

A. A. Seidkulieva

Ryazan State Medical University

Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

E. D. Rokunov

Ryazan State Medical University

Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

F. T. Gadzhieva

Ryazan State Medical University

Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

E. N. Yakusheva

Ryazan State Medical University

Email: abalenihina88@mail.ru
Russia, 390026, Ryazan

References

  1. Gao J., Xie W. (2010) Pregnane X receptor and constitutive androstane receptor at the crossroads of drug metabolism and energy metabolism. Drug. Metab. Dispos. 38(12), 2091‒2095.
  2. Lemmen J., Tozakidis I.E.P., Bele P., Gala H. (2013) Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood–brain barrier after CITCO a-ctivation. Brain Res. 1501, 68‒80.
  3. Slosky L.M., Thompson B.J., Sanchez-Covarrubias L., Zhang Y., Laracuente M.L., Vanderah T.W., Ronaldson P.T., Davis T.P. (2013) Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol. Pharmacol. 84(5), 774‒786.
  4. Li Y., Wang Q., Yao X., Li Y. (2010) Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur. J. Pharmacol. 640(1‒3), 46‒54.
  5. Daujat-Chavanieu M., Gerbal-Chaloin S. (2020) Regulation of CAR and PXR expression in health and disease. Cells. 9, 2395.
  6. Yang H., Wang H. (2014) Signaling control of the constitutive androstane receptor (CAR). Protein Cell. 5(2), 113–123.
  7. Lynch C., Pan Y., Li L., Heyward S., Moeller T., Swaan P.W., Wang H. (2014) Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes. Toxicol. Appl. Pharmacol. 279(1), 33‒42.
  8. Scopino K., Dalgarno C., Nachmanoff C., Krizanc D., Thayer K.M., Weir M.P. (2021) Arginine methylation regulates ribosome CAR function. Int. J. Mol Sci. 22(3), 1335.
  9. Chen T., Chen Q., Xu Y., Zhou Q., Zhu J., Zhang H., Wu Q., Xu J., Yu C. (2011) SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism. J. Hepatol. 56(1), 210‒217.
  10. Chen T., Laurenzana E.M., Coslo D.M., Chen F., Omiecinski C.J. (2014) Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor. Biochem. J. 458(1), 95‒107.
  11. Timsit Y.E., Negishi M. (2014) Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One. 9(5), e96092.
  12. Щулькин А.В., Абаленихина Ю.В., Сеидкулиева А.А., Рябков А.Н., Якушева Е.Н. (2021) Индукция конститутивного андростанового рецептора при развитии окислительного стресса. Бюлл. эксп. биологии и медицины. 171(5), 588‒591.
  13. Абаленихина Ю.В., Судакова Е.А., Слепнев А.А., Сеидкулиева А.А., Ерохина П.Д., Щулькин А.В., Якушева Е.Н. (2022) Функционирование прегнан Х рецептора в условиях окислительного стресса. Биол. мембраны. 39(2), 107‒115.
  14. Абаленихина Ю.В., Щулькин А.В., Сеидкулиева А.А., Правкин С.К., Якушева Е.Н. (2022) Регуляция конститутивного андростанового рецептора в клетках линии Сасо-2 при моделировании окислительного стресса in vitro. Биомед. химия. 68(4), 297‒301.
  15. Абаленихина Ю.В., Судакова Е.А., Сеидкулиева А.А., Щулькин А.В., Якушева Е.Н. (2022) Влияние донора оксида азота S-нитрозоглутатиона на экспрессию конститутивного андростанового рецептора. Журн. эволюционной биохимии и физиологии. 58(5), 1341‒1352.
  16. Haddad J.J. (2001) L-Buthionine-(S,R)-sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, augments LPS-mediated pro-inflammatory cytokine biosynthesis: evidence for the implication of an IkappaB-alpha/NF-kappaB insensitive pathway. Eur. Cytokine. 12(4), 614‒624.
  17. Rao R.K., Li L., Baker R.D., Baker S.S., Gupta A. (2000) Glutathione oxidation and PTPase inhibition by hydrogen peroxide in Caco-2 cell monolayer. Am. J. Physiol. Gastrointest. Liver Physiol. 279(2), 332‒340.
  18. Tolosa L., Donato M.T., Gómez-Lechón M.J. (2015) General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 1250, 333‒348.
  19. Boschi-Muller S, Azza S., Sanglier-Cianferani S., Talfournier F., Van Dorsselear A., Branlant G. (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J. Biol. Chem. 275(46), 35908‒35913.
  20. Ellman G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1), 70‒77.
  21. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 7(72), 248‒254.
  22. Абаленихина Ю.В., Щулькин А.В., Мыльников П.Ю., Рокунов Е.Д., Якушева Е.Н. (2022) Механизмы регуляции Р-гликопротеина в условиях экзогенного и эндогенного окислительного стресса in vitro. Acta Naturae. 14(3), 69‒78.
  23. Forman H.J., Zhang H., Rinna A. (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30(1–2), 1‒12.
  24. Usta M., Wortelboer H.M., Vervoort J., Boersma M.G., Rietjens I.M., van Bladeren P.J., Cnubben N.H. (2007) Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells. Chem. Res. Toxicol. 20(12), 1895‒1902.
  25. Schumacher F., Neuber C., Finke H., Nieschalke K., Baesler J., Gulbins E., Kleuser B. (2017) The sphingosine 1-phosphate breakdown product, (2E)-hexadecenal, forms protein adducts and glutathione conjugates in vitro. J. Lipid Res. 58(8), 1648‒1660.
  26. Кулинский В.И., Колесниченко Л.С. (2009) Система глутатиона I. Синтез, транспорт, глутатионтрансферазы, глутатионпероксидазы. Биомед. химия. 55(3), 255‒277.
  27. Drew R., Miners J.O. (1984) The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol. 33(19), 2989‒2994.
  28. Cherian M.T., Chai S.C., Chen T. (2015) Small-molecule modulators of the constitutive androstane receptor. Exp. Opin. Drug Metab. Toxicol. 11(7), 1099‒1114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (69KB)
3.

Download (61KB)
4.

Download (372KB)
5.

Download (390KB)
6.

Download (251KB)
7.

Download (237KB)

Copyright (c) 2023 Ю.В. Абаленихина, А.В. Щулькин, А.А. Сеидкулиева, Е.Д. Рокунов, Ф.Т. Гаджиева, Е.Н. Якушева

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».