Enveloped virus entry as a pharmacological target: viral membrane fusion machineries and their inhibitors
- Authors: Cheresiz S.V.1, Ulyanova E.A.1, Pokrovsky A.G.1
-
Affiliations:
- Zelmanʹs Institute of Medicine and Psychology, Novosibirsk State University
- Issue: Vol 59, No 4 (2025)
- Pages: 517-543
- Section: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0026-8984/article/view/320591
- DOI: https://doi.org/10.31857/S0026898425040016
- ID: 320591
Cite item
Abstract
About the authors
S. V. Cheresiz
Zelmanʹs Institute of Medicine and Psychology, Novosibirsk State University
Email: cheresiz@yandex.ru
Novosibirsk, 630090 Russia
E. A. Ulyanova
Zelmanʹs Institute of Medicine and Psychology, Novosibirsk State UniversityNovosibirsk, 630090 Russia
A. G. Pokrovsky
Zelmanʹs Institute of Medicine and Psychology, Novosibirsk State UniversityNovosibirsk, 630090 Russia
References
- Dimitrov D.S. (2004) Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2(2), 109–122. https://doi.org/10.1038/nrmicro817
- Melby T., Westby M. (2009) Inhibitors of viral entry. Handb. Exp. Pharmacol. 189, 177–202. https://doi.org/10.1007/978-3-540-79086-0_7
- Eggink D., Bontjer I., de Taeye S.W., Langedijk J.P.M., Berkhout B., Sanders R.W. (2019) HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. J. Biol. Chem. 294(15), 5736–5746. https://doi.org/10.1074/jbc.RA119.007360
- Groß R., Dias Loiola L.M., Issmail L., Uhlig N., Eberlein V., Conzelmann C., Olari L.R., Rauch L., Lawrenz J., Weil T., Müller J.A., Cardoso M.B., Gilg A., Larsson O., Höglund U., Pålsson S.A., Tvilum A.S., Løvschall K.B., Kristensen M.M., Spetz A.L., Hontonnou F., Galloux M., Grunwald T., Zelikin A.N., Münch J. (2022) Macromolecular viral entry inhibitors as broad-spectrum first-line antivirals with activity against SARS-CoV-2. Adv. Sci. (Weinh). 9(20), e2201378. https://doi.org/10.1002/advs.202201378
- Gaucherand L., Gaglia M.M. (2022) The role of viral RNA degrading factors in shutoff of host gene expression. Annu. Rev. Virol. 9(1), 213–238. https://doi.org/10.1146/annurev-virology-100120-012345
- Du S., Liu X., Cai Q. (2018) Viral-mediated mRNA degradation for pathogenesis. Biomedicines. 6(4), 111. https://doi.org/10.3390/biomedicines6040111
- Moore J.P., Doms R.W. (2003) The entry of entry inhibitors: a fusion of science and medicine. Proc. Natl. Acad. Sci. USA. 100(19), 10598–10602. https://doi.org/10.1073/pnas.1932511100
- Lazzarin A. (2005) Enfuvirtide: the first HIV fusion inhibitor. Expert Opin. Pharmacother. 6(3), 453–464. https://doi.org/10.1517/14656566.6.3.453
- Dorr P., Westby M., Dobbs S., Griffin P., Irvine B., Macartney M., Mori J., Rickett G., Smith-Burchnell C., Napier C., Webster R., Armour D., Price D., Stammen B., Wood A., Perros M. (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49(11), 4721–4732. https://doi.org/10.1128/AAC.49.11.4721-4732.2005
- Woollard S.M., Kanmogne G.D. (2015) Maraviroc: a review of its use in HIV infection and beyond. Drug. Des. Devel. Ther. 9, 5447–5468. https://doi.org/10.2147/DDDT.S90580
- Su S., Xu W., Jiang S. (2022) Virus entry inhibitors: past, present, and future. In: Virus Entry Inhibitors. Advances in Experimental Medicine and Biology. Eds Jiang S., Lu L. Singapore: Springer, V. 1366, p. 1–11. https://doi.org/10.1007/978-981-16-8702-0_1
- Silva-Júnior E.F.D. (2022) Entry Inhibitors of RNA viruses. Curr. Med. Chem. 29(4), 609–611. https://doi.org/10.2174/092986732904220207113503
- Rey F.A., Lok S.M. (2018) Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 172(6), 1319–1334. https://doi.org/10.1016/j.cell.2018.02.054
- Maginnis M.S. (2023) β-arrestins and G protein-coupled receptor kinases in viral entry: a graphical review. Cell Signal. 102, 110558. https://doi.org/10.1016/j.cellsig.2022.110558
- Riedel C., Vasishtan D., Siebert C.A., Whittle C., Lehmann M.J., Mothes W., Grünewald K. (2017) Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. J. Struct. Biol. 197(2), 172–180. https://doi.org/10.1016/j.jsb.2016.06.017
- Herold N., Anders-Ößwein M., Glass B., Eckhardt M., Müller B., Kräusslich H.G. (2014) HIV-1 entry in SupT1-R5, CEM-ss, and primary CD4+ T cells occurs at the plasma membrane and does not require endocytosis. J. Virol. 88(24), 13956–13970. https://doi.org/10.1128/JVI.01543-14
- Daecke J., Fackler O.T., Dittmar M.T., Kräusslich H.G. (2005) Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79(3), 1581–1594. https://doi.org/10.1128/JVI.79.3.1581-1594.2005
- Van Wilgenburg B., Moore M.D., James W.S., Cowley S.A. (2014) The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4. PLoS One. 9(1), e86071. https://doi.org/10.1371/journal.pone.0086071
- Chauhan A., Mehla R., Vijayakumar T.S., Handy I. (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology. 456‒457, 1–19. https://doi.org/10.1016/j.virol.2014.03.002
- Kalia M., Jameel S. (2011) Virus entry paradigms. Amino Acids. 41(5), 1147–1157. https://doi.org/10.1007/s00726-009-0363-3
- Schornberg K., Matsuyama S., Kabsch K., Delos S., Bouton A., White J. (2006) Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80(8), 4174–4178. https://doi.org/10.1128/JVI.80.8.4174-4178.2006
- Hunt C.L., Lennemann N.J., Maury W. (2012) Filovirus entry: a novelty in the viral fusion world. Viruses. 4(2), 258–275. https://doi.org/10.3390/v4020258
- Schowalter R.M., Chang A., Robach J.G., Buchholz U.J., Dutch R.E. (2009) Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. J. Virol. 83(3), 1511–1522. https://doi.org/10.1128/JVI.01381-08
- Kinder J.T., Klimyte E.M., Chang A., Williams J.V., Dutch R.E. (2019) Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology. 531, 248–254. https://doi.org/10.1016/j.virol.2019.03.003
- Mothes W., Boerger A.L., Narayan S., Cunningham J.M., Young J.A. (2000) Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell. 103(4), 679–689. https://doi.org/10.1016/s0092-8674(00)00170-7
- Plemper R.K. (2011) Cell entry of enveloped viruses. Curr. Opin. Virol. 1(2), 92–100. https://doi.org/10.1016/j.coviro.2011.06.002
- Ghietto L.M., Gil P.I., Olmos Quinteros P., Gomez E., Piris F.M., Kunda P., Contigiani M., Paglini M.G. (2022) Members of Venezuelan Equine Encephalitis complex entry into host cells by clathrin-mediated endocytosis in a pH-dependent manner. Sci. Rep. 12(1), 14556. https://doi.org/10.1038/s41598-022-18846-w
- Yang F., Lin S., Ye F., Yang J., Qi J., Chen Z., Lin X., Wang J., Yue D., Cheng Y., Chen Z., Chen H., You Y., Zhang Z., Yang Y., Yang M., Sun H., Li Y., Cao Y., Yang S., Wei Y., Gao G.F., Lu G. (2020) Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational changes and interactions with a neutralizing antibody. Cell Host Microbe. 27(3), 441–453.e7. https://doi.org/10.1016/j.chom.2019.12.012
- Nikolic J., Belot L., Raux H., Legrand P., Gaudin Y., Albertini A. (2018) Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 9(1), 1029. https://doi.org/10.1038/s41467-018-03432-4
- Rutten L., Gilman M.S.A., Blokland S., Juraszek J., McLellan J.S., Langedijk J.P.M. (2020) Structure-based design of prefusion-stabilized filovirus glycoprotein trimers. Cell Rep. 30(13), 4540–4550.e3. https://doi.org/10.1016/j.celrep.2020.03.025
- Bohan D., Ert H.V., Ruggio N., Rogers K.J., Badreddine M., Aguilar Briseño J.A., Rojas Chavez R.A, Gao B., Stokowy T., Christakou E., Micklem D., Gausdal G., Haim H., Minna J., Lorens J.B., Maury W. (2021) Phosphatidylserine receptors enhance SARS-CoV-2 infection: AXL as a therapeutic target for COVID-19. bioRxiv. 2021.06.15.448419. https://doi.org/10.1101/2021.06.15.448419
- Uzunova K., Filipova E., Pavlova V., Vekov T. (2020) Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 131, 110668. https://doi.org/10.1016/j.biopha.2020.110668
- Devaux C.A., Rolain J.M., Colson P., Raoult D. (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents. 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
- Cox R.M., Plemper R.K. (2017) Structure and organization of paramyxovirus particles. Curr. Opin. Virol. 24, 105–114. https://doi.org/10.1016/j.coviro.2017.05.004
- Schibli D.J., Weissenhorn W. (2004) Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol. Membr. Biol. 21(6), 361–371. https://doi.org/10.1080/09687860400017784
- Fu Q., Shaik M.M., Cai Y., Ghantous F., Piai A., Peng H., Rits-Volloch S., Liu Z., Harrison S.C., Seaman M.S., Chen B., Chou J.J. (2018) Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA. 115(38), E8892–E8899. https://doi.org/10.1073/pnas.1807259115
- Guardado-Calvo P., Rey F.A. (2021) The viral class ii membrane fusion machinery: divergent evolution from an ancestral heterodimer. Viruses. 13(12), 2368. https://doi.org/10.3390/v13122368
- Roman-Sosa G., Kielian M. (2011) The interaction of alphavirus E1 protein with exogenous domain III defines stages in virus-membrane fusion. J. Virol. 85(23), 12271–12279. https://doi.org/10.1128/JVI.05902–11
- Kielian M. (2006) Class II virus membrane fusion proteins. Virology. 344(1), 38–47. https://doi.org/10.1016/j.virol.2005.09.036
- Lu L., Su S., Yang H., Jiang S. (2021) Antivirals with common targets against highly pathogenic viruses. Cell. 184(6), 1604–1620. https://doi.org/10.1016/j.cell.2021.02.013
- de Wispelaere M., Lian W., Potisopon S., Li P.C., Jang J., Ficarro S.B., Clark M.J., Zhu X., Kaplan J.B., Pitts J.D., Wales T.E., Wang J., Engen J.R., Marto J.A., Gray N.S., Yang P.L. (2018) Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol. 25(8), 1006–1016. e8. https://doi.org/10.1016/j.chembiol.2018.05.011
- Schmidt A.G., Yang P.L., Harrison S.C. (2010) Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog. 6(4), e1000851. https://doi.org/10.1371/journal.ppat.1000851
- Yu Y., Deng Y.Q., Zou P., Wang Q., Dai Y., Yu F., Du L., Zhang N.N., Tian M., Hao J.N., Meng Y., Li Y., Zhou X., Fuk-Woo Chan J., Yuen K.Y., Qin C.F., Jiang S., Lu L. (2017) A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun. 8, 15672. https://doi.org/10.1038/ncomms15672
- Rangel M.V., Catanzaro N., Thannickal S.A., Crotty K.A., Noval M.G., Johnson K.E.E., Ghedin E., Lazear H.M., Stapleford K.A. (2022) Structurally conserved domains between Flavivirus and Alphavirus fusion glycoproteins contribute to replication and infectious-virion production. J. Virol. 96(2), e0177421. https://doi.org/10.1128/JVI.01774-21
- Regan A.D., Whittaker G.R. (2013) Entry of rhabdoviruses into animal cells. Adv. Exp. Med. Biol. 790, 167–177. https://doi.org/10.1007/978-1-4614-7651-1_9
- Beilstein F., Abou Hamdan A., Raux H., Belot L., Ouldali M., Albertini A.A., Gaudin Y. (2020) Identification of a pH-Sensitive Switch in VSV-G and a crystal structure of the G pre-fusion state highlight the VSV-G structural transition pathway. Cell Rep. 32(7), 108042. https://doi.org/10.1016/j.celrep.2020.108042
- Connolly S.A., Jardetzky T.S., Longnecker R. (2021) The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 19(2), 110–121. https://doi.org/10.1038/s41579-020-00448-w
- Cooper R.S., Georgieva E.R., Borbat P.P., Freed J.H., Heldwein E.E. (2018) Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat. Struct. Mol. Biol. 25, 416–424. https://doi.org/10.1038/s41594-018-0060-6
- Mazzon M., Marsh M. (2019) Targeting viral entry as a strategy for broad-spectrum antivirals. F1000Res. 8, F1000 Faculty Rev-1628. https://doi.org/10.12688/f1000research.19694.1
- Conzelmann C., Müller J.A., Perkhofer L., Sparrer K.M., Zelikin A.N., Münch J., Kleger A. (2020) Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19. Clin. Med. (Lond). 20(6), e218–e221. https://doi.org/10.7861/clinmed.2020-0351
- Mycroft-West C.J., Su D., Pagani I., Rudd T.R., Elli S., Gandhi N.S., Guimond S.E., Miller G.J., Meneghetti M.C.Z., Nader H.B., Li Y., Nunes Q.M., Procter P., Mancini N., Clementi M., Bisio A., Forsyth N.R., Ferro V., Turnbull J.E., Guerrini M., Fernig D.G., Vicenzi E., Yates E.A., Lima M.A., Skidmore M.A. (2020) Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb. Haemost. 120(12), 1700–1715. https://doi.org/10.1055/s-0040-1721319
- Dey P., Bergmann T., Cuellar-Camacho J.L., Ehrmann S., Chowdhury M.S., Zhang M., Azab W. (2018) Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano. 12(7), 6429–6442. https://doi.org/10.1021/acsnano.8b01616
- Dogra P., Martin E.B., Williams A., Richardson R.L., Foster J.S., Hackenback N., Kennel S.J., Sparer T.E., Wall J.S. (2015) Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One. 10(5), e0126239. https://doi.org/10.1371/journal.pone.0126239
- Sachdev D.D., Zerhouni-Layachi B., Ortigoza M., Profy A.T., Tuen M., Hioe C.E., Klotman M.E. (2009) The differential binding and activity of PRO 2000 against diverse HIV-1 envelopes. J. Acquir. Immune Defic. Syndr. 51(2), 125–129. https://doi.org/10.1097/qai.0b013e31819f9e31
- Vanderlinden E., Boonen A., Noppen S., Schoofs G., Imbrechts M., Geukens N., Snoeck R, Stevaert A., Naesens L., Andrei G., Schols D. (2023) PRO-2000 exhibits SARS-CoV-2 antiviral activity by interfering with spike-heparin binding. Antiviral. Res. 217, 105700. https://doi.org/10.1016/j.antiviral.2023.105700
- Eaton E.F., Hoesley C.J. (2014) Barrier methods for human immunodeficiency virus prevention. Infect. Dis. Clin. North Am. 28(4), 585–599. https://doi.org/10.1016/j.idc.2014.08.006
- Chhabra M., Ferro V. (2020) PI-88 and related heparan sulfate mimetics. Adv. Exp. Med. Biol. 1221, 473–491. https://doi.org/10.1007/978-3-030-34521-1_19
- Maginnis M.S. (2018) Virus-receptor interactions: the key to cellular invasion. J. Mol. Biol. 430(17), 2590–2611. https://doi.org/10.1016/j.jmb.2018.06.024
- Sriwilaijaroen N., Suzuki Y. (2022) Roles of sialyl glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 infections. Methods Mol. Biol. 2556, 243–271. https://doi.org/10.1007/978-1-0716-2635-1_17
- Bai Y., Jones J.C., Wong S.S., Zanin M. (2021) Antivirals targeting the surface glycoproteins of influenza virus: mechanisms of action and resistance. Viruses. 13(4), 624. https://doi.org/10.3390/v13040624
- Bhatia S., Lauster D., Bardua M., Ludwig K., Angioletti-Uberti S., Popp N., Hoffmann U., Paulus F., Budt M., Stadtmüller M., Wolff T., Hamann A., Böttcher C., Herrmann A., Haag R. (2017) Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. Biomaterials. 138, 22–34. https://doi.org/10.1016/j.biomaterials.2017.05.028
- Bohan D., Maury W. (2021) Enveloped RNA virus utilization of phosphatidylserine receptors: advantages of exploiting a conserved, widely available mechanism of entry. PLoS Pathog. 17(9), e1009899. https://doi.org/10.1371/journal.ppat.1009899
- Wang Y., Zhou Z., Wu X., Li T., Wu J., Cai M., Nie J., Wang W., Cui Z. (2023) Pseudotyped viruses. Adv. Exp. Med. Biol. 1407, 1–27. https://doi.org/10.1007/978-981-99-0113-5_1
- Kononova A.A., Sokolova A.S., Cheresiz S.V., Yarovaya O.I., Nikitina R.A., Chepurnov A.A., Pokrovsky A.G., Salakhutdinov N.F. (2017) N-Heterocyclic borneol derivatives as inhibitors of Marburg virus glycoprotein-mediated VSIV pseudotype entry. Medchemcomm. 8(12), 2233–2237. https://doi.org/10.1039/c7md00424a
- Cheresiz S.V., Kononona A.A., Skarnovich M., Volkova A.N., Poletaeva Yu. A., Emaminia F., Pyankov O.V., Schultz E.E., Pokrovsky A.G. (2022) An amide derivative of betulonic acid as a new inhibitor of Sars-CoV-2 spike protein-mediated cell entry and Sars-CoV-2 infection. Insights Chem. Biochem. 2(2), 1‒11. ICBC. MS.ID.000535. https://doi.org/10.33552/ICBC.2022.02.000535
- De Clercq E. (2015) AMD3100/CXCR4 inhibitor. Front. Immunol. 6, 276. https://doi.org/10.3389/fimmu.2015.00276
- Ferain T., Hoveyda H., Ooms F., Schols D., Bernard J., Fraser G. (2011) Agonist-induced internalization of CC chemokine receptor 5 as a mechanism to inhibit HIV replication. J. Pharmacol. Exp. Ther. 337(3), 655–662. https://doi.org/10.1124/jpet.111.179622
- Muccini C., Canetti D., Castagna A., Spagnuolo V. (2022) Efficacy and safety profile of fostemsavir for the treatment of people with human immunodeficiency virus-1 (HIV-1): current evidence and place in therapy. Drug Des. Devel. Ther. 16, 297–304. https://doi.org/10.2147/DDDT.S273660
- Wild C., Greenwell T., Matthews T. (1993) A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses. 9(11), 1051–1053. https://doi.org/10.1089/aid.1993.9.1051
- Berkhout B., Eggink D., Sanders R.W. (2012) Is there a future for antiviral fusion inhibitors? Curr. Opin. Virol. 2(1), 50–59. https://doi.org/10.1016/j.coviro.2012.01.002
- Yao Q., Compans R.W. (1996) Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology. 223(1), 103–112. https://doi.org/10.1006/viro.1996.0459
- Khetawat D., Broder C.C. (2010) A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virol. J. 7, 312. https://doi.org/10.1186/1743-422X-7-312
- Mathieu C., Huey D., Jurgens E., Welsch J.C., DeVito I., Talekar A., Horvat B., Niewiesk S., Moscona A., Porotto M. (2015) Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. J. Virol. 89(2), 1143–1155. https://doi.org/10.1128/JVI.02417-14
- Higgins C.D., Koellhoffer J.F., Chandran K., Lai J.R. (2013) C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking. Bioorg. Med. Chem. Lett. 23(19), 5356–5360. https://doi.org/10.1016/j.bmcl.2013.07.056
- Gaillard V., Galloux M., Garcin D., Eléouët J.F., Le Goffic R., Larcher T., Rameix-Welti M.A., Boukadiri A., Héritier J., Segura J.M., Baechler E., Arrell M., Mottet-Osman G., Nyanguile O. (2017) A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading. Antimicrob. Agents Chemother. 61(4), e02241–16. https://doi.org/10.1128/AAC.02241+16
- Liu I.J., Kao C.L., Hsieh S.C., Wey M.T., Kan L.S., Wang W.K. (2009) Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral. Res. 81(1), 82–87. https://doi.org/10.1016/j.antiviral.2008.10.001
- Panchal D., Kataria J., Patel K., Crowe K., Pai V., Azizogli A.R., Kadian N., Sanyal S., Roy A., Dodd-O J., Acevedo-Jake A.M., Kumar V.A. (2021) Peptide-based inhibitors for SARS-CoV-2 and SARS-CoV. Adv. Ther. (Weinh). 4(10), 2100104. https://doi.org/10.1002/adtp.202100104
- Channappanavar R., Lu L., Xia S., Du L., Meyerholz D.K., Perlman S., Jiang S. (2015) Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J. Infect. Dis. 212(12), 1894–1903. https://doi.org/10.1093/infdis/jiv325
- Zhao P., Wang B., Ji C.M., Cong X., Wang M., Huang Y.W. (2018) Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antiviral. Res. 150, 1–8. https://doi.org/10.1016/j.antiviral.2017.11.021
- Mizukoshi F., Baba K., Goto Y., Setoguchi A., Fujino Y., Ohno K., Oishi S., Kodera Y., Fujii N., Tsujimoto H. (2009) Antiviral activity of membrane fusion inhibitors that target gp40 of the feline immunodeficiency virus envelope protein. Vet. Microbiol. 136(1–2), 155–159. https://doi.org/10.1016/j.vetmic.2008.10.009
- Zhang Q., Liang T., Nandakumar K.S., Liu S. (2021) Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin. Pharmacother. 22(6), 715–728. https://doi.org/10.1080/14656566.2020.1856814
- Wang W., Cole A.M., Hong T., Waring A.J., Lehrer R.I. (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J. Immunol. 170(9), 4708–4716. https://doi.org/10.4049/jimmunol.170.9.4708
- Kudryashova E., Zani A., Vilmen G., Sharma A., Lu W., Yount J.S., Kudryashov D.S. (2022) Inhibition of SARS-CoV-2 infection by human defensin HNP1 and retrocyclin RC-101. J. Mol. Biol. 434(6), 167225. https://doi.org/10.1016/j.jmb.2021.167225
- Ahmadi K., Farasat A., Rostamian M., Johari B., Madanchi H. (2022) Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an in silico drug repurposing study. J. Biomol. Struct. Dyn. 40(12), 5566–5576. https://doi.org/10.1080/07391102.2021
- Marqus S., Pirogova E., Piva T.J. (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 24(1), 21. https://doi.org/10.1186/s12929-017-0328-x
- Mayaux J.F., Bousseau A., Pauwels R., Huet T., Hénin Y., Dereu N., Evers M., Soler F., Poujade C., De Clercq E. (1994) Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc. Natl. Acad. Sci. USA. 91(9), 3564–3568. https://doi.org/10.1073/pnas.91.9.3564
- Jiang S., Lu H., Liu S., Zhao Q., He Y., Debnath A.K. (2004) N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother. 48(11), 4349–4359. https://doi.org/10.1128/AAC.48.11.4349-4359.2004
- Frey G., Rits-Volloch S., Zhang X.Q., Schooley R.T., Chen B., Harrison S.C. (2006) Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc. Natl. Acad. Sci. USA. 103(38), 13938–13943. https://doi.org/10.1073/pnas.060103610
- Cai L., Gochin M. (2007) A novel fluorescence intensity screening assay identifies new low-molecular-weight inhibitors of the gp41 coiled-coil domain of human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 51(7), 2388‒2395. https://doi.org/10.1128/AAC.00150-07
- Jiang X., Jia Q., Lu L., Yu F., Zheng J., Shi W., Cai L., Jiang S., Liu K. (2016) A novel bispecific peptide HIV-1 fusion inhibitor targeting the N-terminal heptad repeat and fusion peptide domains in gp41. Amino Acids. 48(12), 2867–2873. https://doi.org/10.1007/s00726-016-2325-x
- Herrera E., Gomara M.J., Mazzini S., Ragg E., Haro I. (2009) Synthetic peptides of hepatitis G virus (GBV-C/HGV) in the selection of putative peptide inhibitors of the HIV-1 fusion peptide. J. Phys. Chem. B. 113(20), 7383–7391. https://doi.org/10.1021/jp900707t
- Murray E.J., Leaman D.P., Pawa N., Perkins H., Pickford C., Perros M., Zwick M.B., Butler S.L. (2010) A low-molecular-weight entry inhibitor of both CCR5- and CXCR4-tropic strains of human immunodeficiency virus type 1 targets a novel site on gp41. J. Virol. 84(14), 7288–7299. https://doi.org/10.1128/JVI.00535-10
- Zhao P., Wang B., Ji C.M., Cong X., Wang M., Huang Y.W. (2018) Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antiviral. Res. 150, 1–8. https://doi.org/10.1016/j.antiviral.2017.11.021
- Ozorowski G., Torres J.L., Santos-Martins D., Forli S., Ward A.B. (2020) A strain-specific inhibitor of receptor-bound HIV-1 targets a pocket near the fusion peptide. Cell Rep. 33(8), 108428. https://doi.org/10.1016/j.celrep.2020.108428
- Lee J., Nyenhuis D.A., Nelson E.A., Cafiso D.S., White J.M., Tamm L.K. (2017) Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc. Natl. Acad. Sci. USA. 114(38), E7987–E7996. https://doi.org/10.1073/pnas.1708052114
- Grimaldi M., Stillitano I., Amodio G., Santoro A., Buonocore M., Moltedo O., Remondelli P., D’Ursi A.M. (2018) Structural basis of antiviral activity of peptides from MPER of FIV gp36. PLoS One. 13(9), e0204042. https://doi.org/10.1371/journal.pone.0204042
- Xiao T., Frey G., Fu Q., Lavine C.L., Scott D.A., Seaman M.S., Chou J.J., Chen B. (2020) HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat. Chem. Biol. 16(5), 529–537. https://doi.org/10.1038/s41589-020-0496-y
- Koehler J.W., Smith J.M., Ripoll D.R., Spik K.W., Taylor S.L., Badger C.V., Grant R.J., Ogg M.M., Wallqvist A., Guttieri M.C., Garry R.F., Schmaljohn C.S. (2013) A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses. PLoS Negl. Trop. Dis. 7(9), e2430. https://doi.org/10.1371/journal.pntd.0002430
- Gaffney A., Nangarlia A., Ang C.G., Gossert S., Rashad Ahmed A.A., Hossain M.A., Abrams C.F., Smith A.B. 3rd, Chaiken I. (2021) HIV-1 Env-dependent cell killing by bifunctional small-molecule/peptide conjugates. ACS Chem. Biol. 16(1), 193–204. https://doi.org/10.1021/acschembio.0c00888
- Ang C.G., Carter E., Haftl A., Zhang S., Rashad A.A., Kutzler M., Abrams C.F., Chaiken I.M. (2021) Peptide triazole thiol irreversibly inactivates metastable HIV-1 Env by accessing conformational triggers intrinsic to virus-cell entry. Microorganisms. 9(6), 1286. https://doi.org/10.3390/microorganisms9061286
- de Wispelaere M., Lian W., Potisopon S., Li P.C., Jang J., Ficarro S.B., Clark M.J., Zhu X., Kaplan J.B., Pitts J.D., Wales T.E., Wang J., Engen J.R., Marto J.A., Gray N.S., Yang P.L. (2018) Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol. 25(8), 1006–1016.e8. https://doi.org/10.1016/j.chembiol.2018.05.011
- Miller D.K., Lenard J. (1980) Inhibition of vesicular stomatitis virus infection by spike glycoprotein. Evidence for an intracellular, G protein-requiring step. J. Cell Biol. 84(2), 430–437. https://doi.org/10.1083/jcb.84.2.430
- Tsiang H., Superti F. (1984) Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells. Brief report. Arch. Virol. 81(3–4), 377–382. https://doi.org/10.1007/BF01310010
- Wu Y., Pons V., Noël R., Kali S., Shtanko O., Davey R.A., Popoff M.R., Tordo N., Gillet D., Cintrat J.C., Barbier J. (2019) DABMA: a derivative of ABMA with improved broad-spectrum inhibitory activity of toxins and viruses. ACS Med. Chem. Lett. 10(8), 1140–1147. https://doi.org/10.1021/acsmedchemlett.9b00155
- Andersen P.I., Ianevski A., Lysvand H., Vitkauskiene A., Oksenych V., Bjørås M., Telling K., Lutsar I., Dumpis U., Irie Y., Tenson T., Kantele A., Kainov D.E. (2020) Discovery and development of safe-in-man broad-spectrum antiviral agents. Int. J. Infect. Dis. 93, 268–276. https://doi.org/10.1016/j.ijid.2020.02.018
- Bauer D.J., Stvincent L., Kempe C.H., Downie A.W. (1963) Prophylactic treatment of small pox contacts with N-methylisatin beta-thiosemicarbazone (Compound 33t57, Marboran). Lancet. 35, 494–496.
- Müller B., Kräusslich H.G. (2009) Antiviral strategies. Handb. Exp. Pharmacol. 189(189), 1–24. https://doi.org/10.1007/978-3-540-79086-0_1
- Borysiewicz J., Lucka-Sobstel B. (1978) The effect of certain mannich N-bases, derivatives of isatin beta-thiosemicarbazone, on the replication of vaccinia virus in in vitro studies. Acta Microbiol. Pol. 27, 111–121.
- Ison M.G. (2017) Antiviral treatments. Clin. Chest. Med. 38(1), 139–153. https://doi.org/10.1016/j.ccm.2016.11.008
- Sierra-Aragón S., Walter H. (2012) Targets for inhibition of HIV replication: entry, enzyme action, release and maturation. Intervirology. 55(2), 84–97. https://doi.org/10.1159/000331995
- Delang L., Neyts J., Vliegen I., Abrignani S., Neddermann P., De Francesco R. (2013) Hepatitis C virus-specific directly acting antiviral drugs. Curr. Top. Microb. Immunol. 369, 289–320. https://doi.org/10.1007/978-3-642-27340-7_12
- Wong J.P., Christopher M.E., Salazar A.M., Sun L.Q., Viswanathan S., Wang M., Saravolac E.G., Cairns M.J. (2010) Broad-spectrum and virus-specific nucleic acid-based antivirals against influenza. Front. Biosci. (Schol Ed). 2(2), 791–800. https://doi.org/10.2741/s102
- Huchting J. (2020) Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir. Chem. Chemother. 28, 2040206620976786. https://doi.org/10.1177/2040206620976786
- Yu M., Si L., Wang Y., Wu Y., Yu F., Jiao P., Shi Y., Wang H., Xiao S., Fu G., Tian K., Wang Y., Guo Z., Ye X., Zhang L., Zhou D. (2014) Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses. J. Med. Chem. 57(23), 10058–10071. https://doi.org/10.1021/jm5014067
- Si L., Meng K., Tian Z., Sun J., Li H., Zhang Z., Soloveva V., Li H., Fu G., Xia Q., Xiao S., Zhang L., Zhou D. (2018) Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes. Sci. Adv. 4(11), eaau8408. https://doi.org/10.1126/sciadv.aau8408
- Vigant F., Santos N.C., Lee B. (2015) Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 13(7), 426–437. https://doi.org/10.1038/nrmicro3475
- Al-Bari M.A.A. (2017) Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 5(1), e00293. https://doi.org/10.1002/prp2.293
- Ma-Lauer Y., Lei J., Hilgenfeld R., von Brunn A. (2012) Virus-host interactomes — antiviral drug discovery. Curr. Opin. Virol. 2(5), 614–621. https://doi.org/10.1016/j.coviro.2012.09.003
- Zhou Y., Vedantham P., Lu K., Agudelo J., Carrion R.Jr., Nunneley J.W., Barnard D., Pöhlmann S., McKerrow J.H., Renslo A.R., Simmons G. (2015) Protease inhibitors targeting coronavirus and filovirus entry. Antiviral. Res. 116, 76–84. https://doi.org/10.1016/j.antiviral.2015.01.011
- Scarcella M., d’Angelo D., Ciampa M., Tafuri S., Avallone L., Pavone L.M., De Pasquale V. (2022) The key role of lysosomal protease cathepsins in viral infections. Int. J. Mol. Sci. 23(16), 9089. https://doi.org/10.3390/ijms23169089
- Izaguirre G. (2019) The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses. 11(9), 837. https://doi.org/10.3390/v11090837
- Mahajan S., Choudhary S., Kumar P., Tomar S. (2021) Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg. Med. Chem. 46, 116356. https://doi.org/10.1016/j.bmc.2021.116356
- Meineke R., Rimmelzwaan G.F., Elbahesh H. (2019) Influenza virus infections and cellular kinases. Viruses. 11(2), 171. https://doi.org/10.3390/v11020171
- Pillaiyar T., Laufer S. (2022) Kinases as potential therapeutic targets for anti-coronaviral therapy. J. Med. Chem. 65(2), 955–982. https://doi.org/10.1021/acs.jmedchem.1c00335
Supplementary files
