УЛК 541.128.128.5:6.095.312

АЛЬДОЛЬНАЯ КОНДЕНСАЦИЯ ФУРФУРОЛА И ЦИКЛОГЕКСАНОНА С ИСПОЛЬЗОВАНИЕМ НАНЕСЕННЫХ Na-MgAl-KATAЛИЗАТОРОВ

© 2024 г. Н. В. Точилин^{1,*}, Ю. Е. Галеева¹, Е. А. Ардакова¹, Н. А. Виноградов^{1,2,3}, А. А. Пимерзин^{1,2,3}

¹Самарский государственный технический университет, Самара, 443100 Россия ²Российский государственный университет нефти и газа им. И. М. Губкина, Москва, 119991 Россия ³ООО "Газпромнефть — Промышленные инновации", Санкт-Петербург, 197350 Россия *E-mail: to4ilin.nickolai@vandex.ru

Поступила в редакцию 10 сентября 2024 г. После доработки 08 ноября 2024 г. Принята к публикации 10 декабря 2024 г.

Синтезированы Na—MgAl-катализаторы с мольным соотношением MgO : γ -Al $_2$ O $_3$ в диапазоне 0.15—0.68. Полученные образцы исследованы методами низкотемпературной адсорбции азота, рентгено-флуоресцентного анализа, термопрограммируемой десорбции CO_2 . Каталитические свойства исследованы в альдольной конденсации фурфурола и циклогексанона при температурах 30—120°C, мольном соотношении фурфурол : циклогексанон 1.25 : 1. Установлено, что катализатор с соотношением MgO : $Al_2O_3 = 0.25$ наиболее активен среди исследованных образцов, что объясняется оптимальным соотношением основных активных центров на поверхности материала.

Ключевые слова: альдольная конденсация, фурфурол, циклогексанон, Na-MgAl-катализаторы, оксид алюминия, нитрат магния

DOI: 10.31857/S0028242124050069, EDN: MUREJG

Широкое применение ископаемых топлив привело ко многим неблагоприятным воздействиям на окружающую среду, поэтому все большее внимание исследователей сосредоточено на разработке процессов с применением возобновляемых ресурсов, что, помимо снижения негативного влияния на экологию, позволит сохранить традиционные источники сырья. В последние годы большое внимание уделяется разработке методов использования возобновляемого сырья растительного происхождения для получения ценных химических продуктов. В этом отношении перспективны синтезы на основе фурфурола, который может быть легко получен из такого биосырья, как целлюлоза, гемицеллюлоза, лигнин [1].

Реакции превращения фурфурола положены в основу получения широкого спектра химиче-

ских продуктов [2, 3], например высокооктановых присадок к бензинам [4]. Углеродное число соединений в материалах на основе биомассы обычно равно C_5 — C_6 , что намного ниже, чем требования к углеродному числу дизельного топлива и авиационного керосина. Следовательно, для увеличения потребительской ценности необходимо увеличить углеродную цепочку соединений, полученных из биомассы [5]. Наиболее изученными реакциями роста углеродной цепи являются альдольная конденсация, алкилирование, реакция Дильса—Альдера и другие.

Альдольная конденсация фурфурола и ацетона с последующим гидрированием приводит к получению жидких алканов, используемых в качестве топлива [6]. Преимущество данного процесса относительно других реакций увеличения углеродной цепи в том, что соединения,

получаемые из биомассы, каталитически превращаются в возобновляемое топливо в мягких условиях, с температурой реакции менее 180°С. В реакции альдольной конденсации новые связи С—С образуются за счет уменьшения отношения О/С [2, 5]. Получаемые вещества могут применяться в качестве реактивных топлив, а также как компоненты дизельных топлив после гидродеоксигенации продуктов реакции. Также методом альдольной конденсации производят ряд фурфурол-ацетоновых смол [7].

Реакция альдольной конденсации проводится в присутствии кислотных и основных катализаторов. При использовании гомогенных кислотных катализаторов обеспечивается низкая конверсия исходных реагентов, а гомогенные основные катализаторы, то есть щелочные растворы, характеризуются высокой активностью, однако существует сложность выделения щелочей из реакционной массы. Гетерогенные катализаторы, находящиеся в твердой фазе, не образуют стоков и их легче отделить от жидких продуктов процесса [8].

Катализаторы, получаемые из слоистых двойных гидроксидов, характеризуются умеренной основностью и возможностью варьирования кислотно-основных свойств изменением катионного и анионного состава. Метод соосаждения, традиционно используемый для синтеза слоистых двойных гидроксидов, многостадийный, длительный и приводящий к большому количеству промывных вод, требующих утилизации, что ограничивает их применение в промышленности [9].

В настоящее время в качестве гетерогенных катализаторов для альдольных конденсаций применяют оксиды MgO, CaO, ZnO, смешанные оксиды MgO–ZrO₂, MgO–TiO₂ [6]. Во многих работах упоминается также перспективность таких слоистых двойных гидроксидов (анионные глины или гидротальцитоподобные материалы), активных в реакции альдольной конденсации фурфурола и кетона, в частности ацетона [10]. Альтернативный способ получения катализаторов — метод пропитки носителя по влагоемкости, однако на сегодняшний день свойства таких нанесенных катализаторов, как MgAl-катализаторы, не изучены.

Цель работы — исследование каталитических свойств нанесенных Na-MgAl-катализаторов в реакции альдольной конденсации фурфурола и циклогексанона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе изучались катализаторы, приготовленные методом пропитки γ -Al $_2$ O $_3$ (Alumac 3, Alumac Construct) со средней длиной экструдата 5 мм, диаметром 1.11 мм, насыпной плотностью 0.541 г/см 3 , удельной площадью поверхности 310 м 2 /г, объемом пор 0.877 см 3 /г и диаметром пор 6.319 нм водным раствором Mg(NO $_3$) $_2$ (\geq 98%, AO "BEKTOH") с последующим модифицированием водным раствором NaOH (\geqslant 98%, OOO "Реактив").

Синтез вели по следующей схеме: пропитка гранул Al_2O_3 водным раствором $Mg(NO_3)_2$ по влагоемкости подвакуумом \rightarrow сушка при $120^{\circ}C(2\mathfrak{q})$ \rightarrow

Таблица	 Состав и 	текстурные	характеристики	ı Na–M	ſ gAl-ка¹	гализаторов
---------	------------------------------	------------	----------------	--------	------------------	-------------

Образец	Содержание МgO, мас.%	Содержание Al ₂ O ₃ , мас.%	Содержание NaOH, мас.%	Средний диаметр пор, нм	Объем пор, см ³ /г	Удельная площадь поверхности, м ² /г
Al ₂ O ₃	0.0	0.0	4.0	10.9	0.819	300
Na-Al	0.0	96.1	4.0	9.2	0.644	280
Na-MgAl-0.15	5.3	90.8	3.9	10.6	0.688	260
Na-MgAl-0.18	6.3	89.9	3.8	10.0	0.701	280
Na-MgAl-0.25	8.4	87.7	3.9	9.5	0.615	259
Na-MgAl-0.30	10.0	86.1	3.9	9.7	0.606	250
Na-MgAl-0.40	12.9	83.3	3.8	9.2	0.575	251
Na-MgAl-0.50	15.8	80.4	3.8	8.6	0.599	280
Na-MgAl-0.68	20.1	76.1	3.8	10.0	0.701	281

 \rightarrow прокаливание при 450°С (10 ч) \rightarrow погружение образца в 5%-ный раствор NaOH в дистиллированной воде, полученной на аппарате ДЭ-4-2М, при перемешивании (10 мин) \rightarrow сушка катализатора при 50°С (2 ч). Получали катализаторы с различным соотношением MgO: Al₂O₃ (табл. 1), после чего гранулы измельчали для получения фракции 0.25—0.50 мм, которую использовали в каталитических испытаниях.

Исследования вели в стеклянном реакторе, оснащенном магнитной мешалкой, обратным холодильником и рубашкой для поддержания температуры в процессе альдольной конденсации фурфурола (≥99.5%, OOO "Реактив") и циклогексанона (≥99%, AO "ЭКОС-1") (уравнение I):

где F — фурфурол, CH — циклогексанон, FCH — 2-(2-фурфурилиден)циклогексан-1-он, F_2 CH — 2,6-(дифурфурилиден)циклогексанон.

В качестве теплоносителя использовали полиметилсилоксан (ПМС-20, ООО "Реактив"). Реакционную смесь в мольном соотношении фурфурол: циклогексанон = 1.25 нагревали в реакторе до температуры 90°С при перемешива-

нии, затем добавляли 1 г фракции катализатора 0.25-0.50 мм. Для определения кинетических параметров процесса реакцию вели при температурах 30, 60, 90 и 120° С и мольном соотношении фурфурол : циклогексанон = 10.

Кроме целевых реакций процесса протекает и побочная автоконденсация циклогексанона (II):

$$\begin{array}{c} O \\ + \\ \hline \\ -H_2O \end{array} + \begin{array}{c} O \\ \hline \\ -H_2O \end{array} + \begin{array}{c} O \\ \hline \\ \end{array} (II)$$

Идентификацию продуктов выполняли на газовом хроматографе с квадрупольным массдетектором Shimadzu GCMS-QP2010 (Япония), снабженном неполярной колонкой Agilent DB-Petro (100 м × 0.25 мм × 0.5 мкм), неподвижная фаза — диметилполисилоксан. Температура испарителя 250°С, температура детектора — 200°С; температурная программа: изотерма 10 мин при 140°С, затем нагрев со скорость 5°С/мин до 290°С с последующей выдержкой 20 мин (изотерма). Расход газа-носителя (гелия) 3 мл/мин, линейная скорость — 30 см/с.

Состав жидких продуктов в образцах, отбираемых каждые 30 мин, определяли на газовом хроматографе Кристаллюкс-4000М (ЗАО СКБ "Хроматэк"), снабженном пламенно ионизационным детектором и неполярной колонкой

OV-101 (30 м × 0.5 мм × 0.5 мкм); неподвижная фаза — диметилполисилоксан. Условия анализа: температура детектора 250°С, температура испарителя 250°С; температурная программа: изотерма 2 мин при 110°С, затем нагрев со скоростью 5°С/мин до 250°С. Расход газа-носителя (гелия) 3 мл/мин, линейная скорость — 30 см/с. В качестве внутреннего стандарта использовали толуол. Погрешность метода не превышает 5%. По результатам эксперимента были определены параметры каталитических реакций, в том числе: конверсии исходных реагентов, порядок реакции, константы скорости и энергии активации.

Порядок реакции определяли интегральным графическим методом с построением зависимостей для порядков 0, 1 и 2.

Константы скорости и энергию активации определяли дифференциальным методом Вант—Гоффа¹.

Текстурные характеристики носителей были определены методом низкотемпературной адсорбции азота на порозиметре Quantachrome Autosorb-1 (США). Удельная площадь поверхности определена по модели Брунауэра—Эммета—Теллера при относительном парциальном давлении $P/P_0=0.05-0.3$. Общий объем пор и распределение пор по размерам рассчитывали по десорбционной ветви изотермы адсорбции с использованием модели Баррета—Джойнера—Халенды.

Содержание металлов в синтезированных катализаторах контролировали с помощью рентгенофлуоресцентного анализатора EDX-800HS Shimadzu (Япония).

Основные свойства материалов изучали методом термопрограммируемой десорбции СО с помощью анализатора хемосорбции АМІ-300 (Altamira Instruments, Китай). Исследование состояло из трех этапов. На первом этапе (подготовка) проводили удаление адсорбированной воды из пор при температуре 120°C в токе гелия в течение 2 ч (скорость нагрева 10 град мин $^{-1}$). На второй стадии проводили адсорбцию СО₂ из смеси 10 об.% СО₂ в гелии (скорость потока газа 30 cm^3 мин $^{-1}$) при температуре 60° С (скорость подъема температуры 10 град мин $^{-1}$) в течение 60 мин, затем проводили удаление химически не связанного СО₂ при температуре 60°С в токе гелия в течение 60 мин. На третьей стадии осуществляли десорбцию СО, в токе гелия с подъемом температуры до 800°С (скорость подъема температуры 8 град мин⁻¹) и выдержкой в течение 45 мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изотермы низкотемпературной адсорбции—десорбции азота синтезированных катализаторов (рис. 1) относятся к IV типу, типичному для мезопористых материалов. Петли гистерезиса типа Н3 указывают на щелевидные поры, характерные для мезопористого Al₂O₃. Текстурные

Таблица 2. Концентрации основных центров на образцах Na—MgAl-катализаторов по результатам термопрограммируемой десорбции CO_2

Образец	Низкотемпературные центры, ммоль/г	Высокотемпературные центры, ммоль/г	Суммарная концентрация основных центров, ммоль/г
Na-Al	451	0	451
Na-MgAl-0.15	429	210	639
Na-MgAl-0.18	442	215	658
Na-MgAl-0.25	435	250	685
Na-MgAl-0.30	391	143	535
Na-MgAl-0.40	351	128	480
Na-MgAl-0.50	328	119	447
Na-MgAl-0.68	308	70	378

свойства изучаемых образцов крайне близки (табл. 1).

Концентрация слабых (низкотемпературных) центров в диапазоне температур 50-500°C максимальна при отсутствии MgO в составе катализатора, а концентрация сильных (высокотемпературных) центров в диапазоне температур 500-700°C, как и суммарная концентрация основных центров максимальна при соотношении $MgO : Al_2O_2 = 0.25$. Добавление MgO в состав катализатора приводит к увеличению силы активных центров за счет образования на поверхности Mg-Al-O-связей, характеризующихся большей основностью, по сравнению с чистым Al₂O₃; однако при увеличении соотношения количество активных центров уменьшается, вероятно по причине образования кластеров MgO на поверхности [11].

Конверсию исходных реагентов и селективность процесса определяли при температуре 90°С, так как при уменьшении температуры значительно снижается активность катализаторов, а при ее увеличении в продуктах реакции практически отсутствует 2-(2-фурфурилиден)циклогексан-1-он.

Наибольшую активность в реакции альдольной конденсации фурфурола и циклогексанона проявляет катализатор с соотношением

¹ Еремин В. В., Каргов С. И., Успенская И. А., Кузьменко Н. Е., Лунин В. В. Основы физической химии. Теория и задачи: учеб. пособие для вузов / М.: Издательство "Экзамен". 2005. С. 281–283.

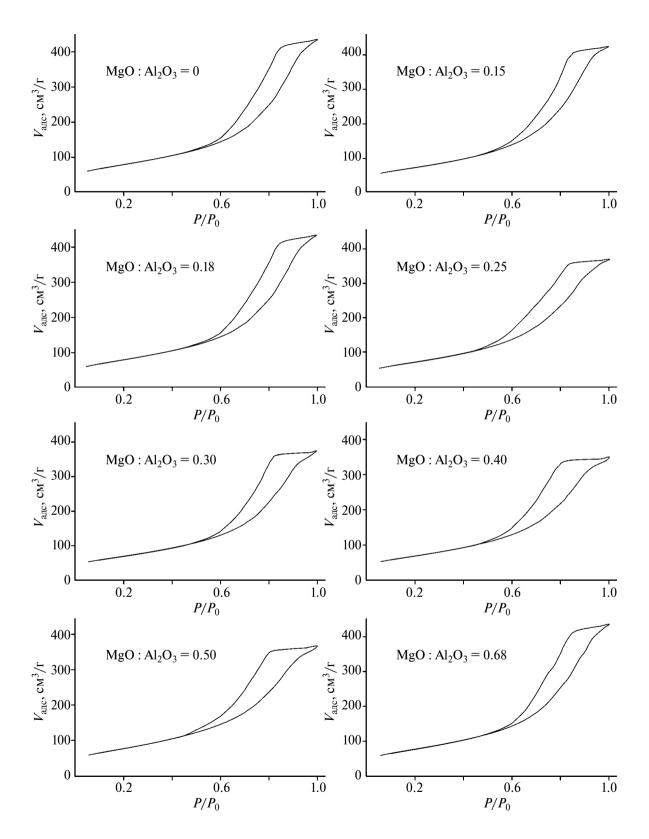
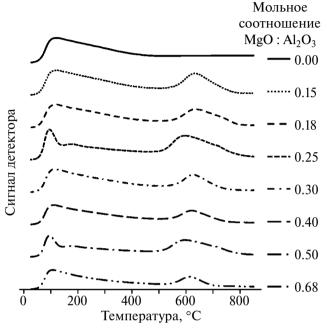



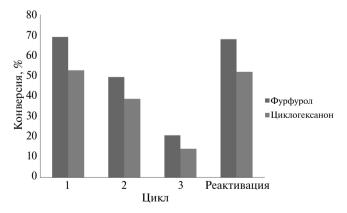
Рис. 1. Изотермы низкотемпературной адсорбции—десорбции азота при 77 К Na-MgAl-катализаторов.

НЕФТЕХИМИЯ том 64 № 5 2024

 ${
m MgO:Al_2O_3=0.25,}$ что коррелирует с результатами термопрограммируемой десорбции ${
m CO_2.}$ Введение MgO в состав образцов приводит к увеличению концентрации высокотемпературных основных центров, отсутствующих у ${
m Na-Al-}$ ката-

Рис. 2. Кривые термопрограммируемой десорбции CO₂ Na-MgAl-катализаторов.

Таблица 3. Конверсия фурфурола и циклогексанона в реакции альдольной конденсации при температуре 90°С. Селективность по целевым продуктам


Мольное соотношение МgO : Al ₂ O ₃ в Na–MgAl- катализаторах	Конверсия циклогексанона, %	Конверсия фурфурола, %	Селективность по FCH, %	Селективность по ${ m F_2CH},$ %	Суммарная селективность, %
0.00	25.9	31.1	18.0	53.5	71.5
0.15	39.1	57.8	14.2	57.3	71.5
0.18	45.0	53.5	22.5	49.8	72.3
0.25	52.5	69.0	16.4	58.2	74.6
0.30	46.8	53.0	24.9	50.1	75.0
0.40	40.1	51.8	18.0	57.8	75.8
0.50	39.9	50.3	19.3	59.0	78.3
0.68	39.6	48.5	21.2	56.7	77.9

лизатора. Таким образом, наибольшей активностью обладает образец, имеющий оптимальное соотношение низкотемпературных и высокотемпературных центров.

Конверсия фурфурола в присутствии образца с соотношением $MgO: Al_2O_3 = 0.25$ достигает 69.0%, а циклогексанона — 52.5%. Суммарная селективность процесса незначительно возрастает с увеличением содержания MgO (от 72 до 78%). Селективность по 2,6-(дифурфурилиден)циклогексанону изменяется в пределах 50.1-59.0%, что значительно выше, чем при использовании смешанных Mg/Al-оксидов, описанных в [12]. Реакция протекает по второму порядку. Энергия активации согласуется с данными литературы (табл. 4) [5].

Таблица 4. Кинетические параметры альдольной конденсации фурфурола и циклогексанона

Температура, °С	Константа скорости, л/(моль с)	Энергия активации, кДж/моль	
30	0.036		
60	0.088	41.7	
90	0.526	41./	
120	1.374		

Рис. 3. Конверсия фурфурола и циклогексанона в реакции альдольной конденсации при температуре 90° С в трех каталитических циклах (1, 2 и 3) и после реактивации при использовании Na—MgAl-катализатора с мольным соотношением MgO: $Al_2O_3 = 0.25$.

С увеличением температуры процесса с 30 до 120°С константа скорости реакции возрастает с 0.036 до 1.374 л/(моль с). При температурах до 60°С реакция протекает в диффузионной области, а при дальнейшем повышении температуры — в кинетической. Основываясь на этом, можно сказать, что выбранная температура 90°С не только обеспечивает получение необходимого количества продуктов, но и соответствует кинетическим требованиям.

Изучена стабильность катализатора при его повторном использовании в исследуемой реакции, а также после его реактивации путем погружения в 5%-ный раствор NaOH в течение 10 мин при перемешивании и последующей сушки при 50°С (рис. 3). Активность катализатора снижается при повторном использовании, однако практически полностью восстанавливается после реактивации. Селективность процесса при этом сохраняется на уровне 70—74%.

ЗАКЛЮЧЕНИЕ

Нанесенные Na–MgAl-катализаторы проявляют значительную активность в реакции альдольной конденсации фурфурола и циклогексанона. При этом наиболее эффективным является образец с мольным соотношением MgO : $Al_2O_3 = 0.25$. Селективность процесса по целевым продуктам при использовании такого катализатора составляет 74.6%. Зависимость текстурных характеристик от количества MgO в синтезированных образцах выявлена не была.

Активность катализатора коррелирует с результатами термопрограммируемой десорбции CO_2 , а значит, напрямую зависит от концентрации основных центров на поверхности образцов. Добавление MgO в состав катализаторов приводит к образованию высокотемпературных основных центров, катализирующих реакцию. Таким образом, варьируя содержание MgO, подобран наиболее активный катализатор.

БЛАГОДАРНОСТИ

Авторы выражают благодарность компании ООО "НКЦ Лабтест" за выполненные исследования методом термопрограммируемой десорбции CO_2 .

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Н. В. Точилин — синтез образцов катализаторов, проведение каталитических экспериментов, обработка результатов каталитических испытаний; Ю. Е. Галеева — обзор литературы, обобщение результатов исследований катализаторов физико-химическими методами, обработка результатов термопрограммируемой десорбции CO_2 ; Е. А. Ардакова — исследование образцов методом низкотемпературной адсорбции N_2 ; Н. А. Виноградов — исследование образцов катализаторов методами рентгенофлуоресцентного анализа; А. А. Пимерзин — постановка цели и задач исследования, подбор условий хроматографического анализа.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Точилин Николай Викторович, ORCID: https://orcid.org/0000-0003-3757-9135

Галеева Юлия Евгеньевна, ORCID: https://orcid.org/0009-0000-7931-1802

Ардакова Елизавета Андреевна, ORCID: https://orcid.org/0009-0003-7110-8393

Виноградов Николай Александрович, ORCID: https://orcid.org/0000-0002-7827-7953

Пимерзин Алексей Андреевич, к.х.н., доцент ORCID: https://orcid.org/0000-0003-1578-5106

СПИСОК ЛИТЕРАТУРЫ

- Deng F., Amarasekara A. Catalytic upgrading of biomass derived furans // Ind. Crops Prod. 2021. V. 159. ID113055. https://doi.org/10.1016/j.indcrop.2020.113055
- Jian H., Qian Q., Shima L., Ke S. Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy // Fuel. 2021. V. 12. № 306. ID121765. https://doi.org/10.1016/j.fuel.2021.121765
- 3. Сорокина К.Н., Таран О.П., Медведева Т.Б., Пармон В.Н. Способ получения 5-гидроксиметилфурфурола и этанола из целлюлозы // Патент РФ № 2636004 (опубл. 2017).

- 4. Ершов М.А., Григорьева Е.В., Гусева А.И., Виноградова Н.Я., Потанин Д.А., Дорохов В.С., Никульшин П.А., Овчинников К.А. Обзор производных фурфурола в качестве перспективных октаноповышающих добавок к топливу // Журнал прикладной химии. 2017. Т. 90. № 9. С. 1145—1155. [Ershov M.A., Grigor'eva E.V., Guseva A.I., Vinogradova N.Y., Potanin D.A., Dorokhov V.S., Nikul'shin P.A., Ovchinnikov K.A. A review of furfural derivatives as promising octane boosters // Russ. J. Appl. Chem. 2017. V. 90. № 9. P. 1402—1412. https://doi.org/10.1134/S1070427217090051]
- 5. Zhang X., Li Ya., Qian Ch., An L., Wang W., Li X, Shao X., Li Zh. Research progress of catalysts for aldol condensation of biomass based compounds // RSC advances. 2023. V. 13. № 14. P. 9466–9478. https://doi.org/10.1039/d3ra00906h
- 6. Lei A., Wei Z., Yin-shuang G., Ding-kai W., Kai-shuai L., Tian-tian G., Xing F., Xian-yong W. Efficient synthesis of C15 fuel precursor by heterogeneously catalyzed aldol-condensation of furfural with cyclopentanone // RSC advances. 2019. V. 9. № 7. P. 3661–3668. https://doi.org/10.1039/C8RA09517E
- 7. Полежаев А.В., Бессонов И.В., Нелюб В.А., Буянова И.А., Чуднов И.С., Бородулин А.С. Исследование реакции конденсации фурфурола с ацетоном // Энциклопедия инженера-химика. 2013. № 1. С. 36—43. EDN: QAGNHH

- 8. *Lin Yu.*, *Huber G*. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion // Energy Environ. Sci. 2009. № 2. P. 68–80. https://doi.org/10.1039/B814955K
- 9. Stepanova L.N., Belskaya O.B. Catalysts based on Mg(Li)Al Layered double hydroxides for the reaction of aldol condensation of furfural with acetone // OGE. 2021. V. 2412. № 1. P. 17–18. https://doi.org/10.1063/5.0075026
- 10. Arumugam M., Kikhtyanin O., Osatiashtiani A., Kyselova V., Fila V., Paterova I., Wong K., Kubicka D. Potassium-modified bifunctional MgAl-SBA-15 for aldol condensation of furfural and acetone. // Sustain. Energy Fuels. 2023. № 7. P. 3060–3066. https://doi.org/10.1039/D3SE00404J
- 11. Kikhtyanin O., Capek L., Smolakova L., Tisler Zd., Kadlec D., Lhotka M., Diblikova P., Kubicka D. Influence of Mg—Al mixed oxide compositions on their properties and performance in aldol condensation // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 13411—13422. https://doi.org/10.1021/acs.iecr.7b03367
- 12. *Kadlec D., Tisler Z., Velvarska R., Peliskova L., Akhmetzyanova U.* Comparison of the properties and catalytic activity of commercially and laboratory prepared Mg/Al mixed oxides in aldol condensation of cyclohexanone with furfural // React. Kinet. Catal. Lett. 2019. № 126. P. 219—235. https://doi.org/10.1007/s11144-018-1497-7