New Ideas about the Structure and Nature of the Crust of the Western Part of the Bay of Bengal, Obtained taking into Account Deep Seismic Data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comprehensive analysis of geological and geophysical data characterizing the structure of the eastern continental margin of India and the adjacent part of the bottom of the Bay of Bengal has been carried out. According to the structural and tectonic features, three sectors are distinguished: southern, central and northern, the natural boundaries between which are the fault zones of the aulacogens Makhanadi and Godavari-Krishna. In the central sector, the pericontinental East Indian Plateau adjoins the continental slope. In 2003, R/V Mezen acquired data using deep seismic sounding method on two profiles in this region. The obtained data and their geological interpretation made it possible to identify the “reduced” continental crust. It is characterized by reduced thickness of the upper, middle and lower layers. A conclusion is made about the continental nature of the East Indian Plateau and the northern part of the Ridge 85° adjacent to it. The light sialic and effusive rocks that form the top of the ridge give a negative gravimetric anomaly in Fay's reduction, which is its outstanding feature.

Texto integral

Acesso é fechado

Sobre autores

V. Illarionov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vkillar@mail.ru
Rússia, Moscow; Moscow

O. Ganzha

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: vkillar@mail.ru
Rússia, Moscow

D. Ilyinsky

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: vkillar@mail.ru
Rússia, Moscow

K. Roginskiy

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: vkillar@mail.ru
Rússia, Moscow

A. Borisova

Institute of Geological and Environmental Sciences

Email: vkillar@mail.ru
França, Toulouse

Bibliografia

  1. Атлас “Опорные геолого-геофизические профили России”. Глубинные сейсмические разрезы по профилям ГСЗ, отработанным в период с 1972 по 1995 год”. Электронное издание. СПб: ВСЕГЕИ, 2013. 94 с.
  2. Белоусов В.В. Переходные зоны между континентами и океанами. М.: Недра, 1982. 152 с.
  3. Долгинов Е.А. К проблеме происхождения океана // Бюл. Моск. об-ва испыт. природы. Отд. Геол. 1979. Т. 54. Вып. 1. С. 22–46.
  4. Илларионов В.К., Ганжа О.Ю., Ильинский Д.А. и др. Природа земной коры южной части Бенгальского залива и прилегающей части Центральной котловины (Индийский океан) // Геофизические процессы и биосфера. 2022. Т. 21. № 3. С. 75–97.
  5. Милановский Е.Е. Рифтогенез в истории Земли (рифтогенез на древних платформах). М.: Недра, 1983. 280 с.
  6. Непрочнов Ю.П., Ганжа О.Ю., Ильин И.А. Методика обработки и интерпретации записей донных сейсмографов при глубинном сейсмическом зондировании в океане // Океанология. 2005. Т. 45. № 3. С. 458–467.
  7. Субботин С.И., Соллогуб В.Б., Чекунов А.В. и др. Глубинные сейсмические исследования Индийского щита // Геофизический журнал.1979. Т. 1. № 1. С. 3–18.
  8. Хаин В.Е. Региональная геотектоника. Внеальпийская Азия и Австралия // М.: Недра, 1979. 356 с.
  9. Anand S.P., Rajaram M., Majumdar T.J., Bhattacharyya R. Structure and tectonics of 85° E Ridge from analysis of Geopotential data // Tectonophysics. 2009. V. 478(1-2). P. 100–110.
  10. Baksi A.K. Geochemistry and geochronology of the Rajmahal Flood Basalt Province, northeastern India: Genetic links to Kerguelen hotspot activity // Journal Earth System Science. 2022. V. 131(3). 157.
  11. Bastia R., Radhakrishna M., Srinivas T. et al. Structural and tectonic interpretation of geophysical data along the eastern continental margin of India with special reference to the deepwater petroliferous basins // Journal of Asian Earth Sciences. 2010. V. 39. P. 608–619.
  12. Bea F., Fershtater G.B., Montero P. et al. Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia // Terra Nova. 2001. V. 13. P. 407–412.
  13. Bharali B.R., Srivastava S.K., Ravichandran V. Seismostratigraphic analysis of Cretaceous-Tertiary seguence of the Mahanadi offshore Basin // Recent geoscientific studies in the Bay of Bengal and the Andaman Sea. Geological Survey of India, Special Publications. 1992. V. 29. P. 247–254.
  14. Biswas S.K. Mesozoic Volcanism in the East Coast Basins of India // Indian Journal of Geology. 1996. V. 68(40). P. 237–254.
  15. Borisova A.Y., Belyatsky B.V., Portnyagin M.V., Sushchevskaya N.M. Petrogenesis of Olivine-phyric Basalts from the Athanasy Nikitin Rise: Evidence for Contamination by Cratonic Lower Continental Crust // Jour. Petrology. 2001. V. 42(2). P. 277–319.
  16. Borisova A.Y., Bindeman I.N., Toplis M.J. et al. Zircon survival in shallow asthenosphere and deep lithosphere // Am. Mineralogist. 2020. V. 105(11). P. 1662–1671.
  17. Borisova A.Y., Bohrson W.A, Grégoire M. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts // Geochemistry. Geosciences. Geosystems. 2017. V. 18(7). P. 2701–2716.
  18. Cambeses A., Chakrabort S., Jön N. et al. How does inherited zircon survive in partially molten mantle: Insights on modes of magma transport in the mantle from nanoscale melt-crystal interaction experiments // Earth and Planetary Science Letters. 2023. V. 601. 117911.
  19. Choudhuri M., Nemčok M., Stuart C. et al. 85°E Ridge, India – Constraints on its Development and Architecture // J. Geol. Soc. India. 2015. V. 84(5). P. 513–530.
  20. Curray J.R, Munasinghe T. Origin of the Rajmahal Traps and the 85°E Ridge: Preliminary Reconstructions of the Trace of the Crozet Hotspot // Geology. 1991. V. 19. P. 1237–1240.
  21. Dobmeier C., Simmat R. Post-Grenvillian transpression in the Chilka Lake area, Eastern Ghats Belt – implications for the geological evolution of peninsular India // Precambrian Res. 2002. V. 113. P. 243–268.
  22. Dupré B., Allègre C. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena // Nature. 1983. V. 303. P. 142–146.
  23. France-Lanord C., Spiess V., Klaus A. et al. Proc. of the Intern. Ocean Discovery Program. Bengal Fan. 2016. V. 354. P. 35.
  24. Fuloria R.C., Pandey R.N., Bharali B.R., Mishra J.K. Stratigraphy, structure and tectonics of Mahanadi offshore basin // Recent geoscientific studies in the Bay of Bengal and the Andaman Sea. Geological Survey of India, Special Publications. 1992. V. 29. P. 255–265.
  25. Hart S. A large-scale isotope anomaly in the Southern Hemisphere mantle // Nature. 1984. V. 309. P. 753–757.
  26. Heinonen J.S., Spera F.J., Bohrson W.A. Thermodynamic limits for assimilation of silicate crust in primitive magmas // Geology. 2022. V. 50(1). P. 81–85.
  27. Ismaiel M., Krishna K. The 24 August 2021 Mw 5.1 Earthquake, 320 km northeast of Chennai, India: Brittle Rupture of a Fault Line // Current Science. 2021. V. 121(8). P. 1005–1006
  28. Kaila K.L., Roy Chowdhury K., Reddy P.R. et al. Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding // J. Geol. Soc. India. 1979. V. 20(7). P. 307–333.
  29. Kostitsyn Yu.A., Belousova E.A., Bortnikov N.S., Sharkov E.V. Zircons in Gabbroid from the Axial Zone of the Mid Atlantic Ridge: U–Pb Age and 176Hf/177Hf Ratio (Results of Investigations by the Laser Ablation Method) // Doklady Earth Sciences. 2009. V. 429. P. 1305–1309.
  30. Kostitsyn Yu.A., Belousova E.A., Silantʹev S.A. et al. Modern Problems of Geochemical and U–Pb Geochronological Studies of Zircon in Oceanic Rocks // Geochemistry International. 2015. V. 53. P. 759–785.
  31. Kostitsyn Yu.A., Silantʹev S.A., Belousova E.A. et al. Time of the Formation of the Ashadze Hydrothermal Field in the Mid Atlantic Ridge (12°58ʹ N): Evidence from Zircon Study // Doklady Earth Sciences. 2012. V. 447. P. 1301–1305.
  32. Krishna K.S., Ismaiel M., Srinivas K. Oceanic rocks beneath the landmass and continental rocks below the ocean – geological complexities in Indian waters // Current Science. 2020. V. 119(6). P. 896–898.
  33. Krishna K.S., Ismaiel M., Srinivas K. et al. Sediment pathways and emergence of Himalayan source material in the Bay of Bengal // Current Science. 2016. V. 110(3). P. 363–371.
  34. Krishna K.S., Ismaiel M., Srinivas K., Saha D. Post-breakup deformations in the Bay of Bengal: Response of crustal strata to the sediment load // Journal Earth Syst. Sci. 2020. V. 129. 159.
  35. Liu C.-S., Sandwell D.T., Curray J.R. The negative gravity field over the 85°E ridge // J. Geophys. Res. 1982. V. 87. № B9. P. 7673–7686.
  36. Mahoney J.J., White W.M., Upton B.G.J. et al. Beyond EM-1: Lavas from Afanasy-Nikitin Rise and the Crozet Archipelago, Indian Ocean // Geology. 1996. V. 24(7). P. 615–618.
  37. Mall D.M., Rao V.K., Reddy P.R. Deep sub-crustal features in the Bengal basin: Seismic signatures for plume activity // Geophysical Research Letters. 1999. V. 26(16). P. 2545–2548.
  38. Mishra D.C., Chandra Sekhar D.V., Venkata Raju D. Ch., Vijaya Kumar V. Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship // Earth and Planetary Science Letters. 1999. V. 172. P. 287–300.
  39. Mishra D.C., Arora K., Tiwari V.M. Gravity anomalies and associated tectonic features over the Indian Peninsular Shield and adjoining ocean basins // Tectonophysics. 2004. V. 379. P. 61–76.
  40. Murthy K.S. Exploring the Passive Margins–a case study from the Eastern Continental Margin of India // J. Ind. Geophys. Union. 2015. V. 19(1). P. 11–26.
  41. Nemčok M., Sinha S.T., Stuart C.J. et al. East Indian margin evolution and crustal architecture: integration of deep reflection seismic interpretation and gravity modelling // Geological Society, London, Special Publications. 2013. V. 369. P. 477–496.
  42. Radhakrishna M., Subrahmanyam C., Damodharan T. Thin oceanic crust below Bay of Bengal inferred from 3D-gravity interpretation // Tectonophysics. 2010. V. 493. P. 93–105.
  43. Rao G.S., Radhakrishna M. Crustal structure and nature of emplacement of the 85° E Ridge in the Mahanadi offshore based on constrained potential field modeling: Implications for intraplate plume emplaced volcanism // Jour. Asian Earth Sciences. 2014. V. 85. P. 80–96.
  44. Rao G.S., Radhakrishna M., Sreejith K.M. et al. Lithosphere structure and upper mantle characteristics below the Bay of Bengal // Geophys. J. Inter. 2016. V. 206. P. 675–695.
  45. Rickers K., Mezger K., Raith M.M. Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes // Precambrian Res. 2001. V. 112. P. 183–212.
  46. Shang L., Gang Hu, Jun Pan et al. Hotspot volcanism along a leaky fracture zone contributes the formation of the 85° E Ridge at 11° N latitude, Bay of Bengal // Tectonophysics. 2022. V. 837. P. 1–14.
  47. Sastri V.V., Venkatachala B.S., Narayanan V. The Evolution of the East coast of India // Palaeogeography, Palaeoclimatology, Palaeoecology. 1981. V. 36. P. 23–54.
  48. Sreejith K.M., Radhakrishna M., Krishna K.S., Majumdar T.J. Development of the negative gravity anomaly of the 85о E Ridge, northeastern Indian Ocean –A process oriented modelling approach // J. Earth Syst. Sci. 2011. V. 120(4). P. 605–615.
  49. Starostenko V., Janik T., Lysynchuk D. et al. Mesozoic(?) lithosphere-scale buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile // Geophys. J. Int. 2013. V. 195. P. 740–766.
  50. Sushchevskaya N.M., Levchenko O.V., Belyatsky B.V. To the question of magmatism and origin of the Afanasy Nikitin Rise due to discovery of ancient zircon by three lion years age // Oceanology. 2022. V. 62(1). P. 114–126.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Bathymetric map of the western part of the Bay of Bengal. Scheme of ION/GX Technology (2007) seismic profiles according to [41]; white asterisks indicate commercial drilling wells A and B according to [33]; yellow asterisk - well IODP-1444 according to [23]. M4 and M5 - GSZ profiles (NIS Mezen, 2003).

Baixar (790KB)
3. Fig. 2. Velocity depth model of the crustal section along the M4 profile. The dotted line with a point shows the “hillock” of the second (western) highland uplift. For the position of the profile, see Fig. 1.

Baixar (318KB)
4. Fig. 3. Depth map of the basement of the East Indian Plateau and the adjacent Jessor Basin and East Indian graben (from [11] c supplementary). Numbers in circles indicate: 1 - Jessor Basin; 2 - East Indian Plateau; 3 - East Indian graben. Notation: 1 - glacial-marine complexes of the Lower Gondwana; 2 - Late Mesozoic-Early Cenozoic sedimentary cover, according to [8]. VGSP - Eastern Gathic fold belt.

Baixar (198KB)
5. Fig. 4. Velocity depth model of the crustal section along the M5 profile. The dotted line with a point indicates the denuded surface of the Archean basement. See Fig. 1, 4 for the position of the profile.

Baixar (314KB)
6. Fig. 5. Structural and tectonic scheme of the study area. 1 - Eastern Gatha fold belt; 2 - Late Mesozoic-Early Cenozoic sedimentary cover, according to [8]; 3 - Lower Gondwana complexes, according to [8]; 4 - outbursts of the latest phase of tectono-magmatic activation, according to [33]; 5 - outcrops of upper mantle ultrabasic rocks; 6 - on the inner and 7 - on the outer shelf, according to [24]; 8 - isohypses (km). HSZ profile - according to [7].

Baixar (345KB)
7. Fig. 6. Fragments of sections of the CDP profiles characterizing the structure of the East Indian plateau (from [43] with supplementary material). For the position of the profiles, see Figs. 3, 5.

Baixar (1MB)
8. Fig. 7. Deep seismic section along the Badwel-Kawali profile, characterizing the structure of the Quddapah block at the border with the Bay of Bengal, according to [7, 28]. The section shows that the Moho boundary with discontinuities in the form of steps dips towards the Bay of Bengal. 1 - Moho boundary; 2 - strong reflecting boundaries in the lower crust; 3 - declivity of reflecting boundaries. For the position of the profile, see Fig. 5.

Baixar (114KB)
9. Fig. 8. Map of the gravimetric field of the Bay of Bengal in the Faya reduction (from [46] with ext.). Two types of negative anomalies are distinguished in the western part of the Bay: extended narrow and isometrically oval. Explanation in the text. Asterisks indicate well A and well B [33], which penetrated the upper granitogneiss layer of the continental crust. M4 and M5 are profiles of the GSZ.

Baixar (365KB)
10. Fig. 9. Depth map of the basement of the Bay of Bengal (from [44] with ext.). 1 - subduction zone. Figures in circles: 1 - Sri Lanka Island; 2 - East India graben; 3 - 85° Ridge; 4 - Central Bengal Basin; 5 - East India Ridge; 6 - pericontinental East India Plateau

Baixar (295KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».