Internal Waves Near Half Moon Island, South Shetland Islands

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We analyze internal waves based on measurements on cruise 87 of the R/V Akademik Mstislav Keldysh in the Bransfield Strait near Half Moon Island and calculations using a numerical model. The measurements were carried out on January 25, 2022 for four hours using a line of temperature and pressure sensors, along with the measurements with a CTD probe. Temperature fluctuations according to the sensors of the thermal line and the probe showed that the amplitude of internal waves is close to 5 m, sometimes reaching 15 m. According to the results of calculations of the global tidal model TPXO9, irregular semidiurnal tides predominate in the study area. Numerical calculations of the parameters of internal waves show that the baroclinic tide generated on a steep slope breaks up into higher frequency waves.

作者简介

O. Mekhova

Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University

Email: egmorozov@mail.ru
Russia, Moscow; Russia, St. Petersburg

D. Smirnova

Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow State University

Email: egmorozov@mail.ru
Russia, Moscow; Russia, Moscow

E. Morozov

Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: egmorozov@mail.ru
Russia, Moscow; Russia, Mosсow region, Dolgoprudny

S. Ostroumova

Shirshov Institute of Oceanology, Russian Academy of Sciences; Russian State Hydrometeorological University

Email: egmorozov@mail.ru
Russia, Moscow; Russia, St. Petersburg

D. Frey

Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Marine Hydrophysical Institute, RAS

Email: egmorozov@mail.ru
Russia, Moscow; Russia, Mosсow region, Dolgoprudny; Russia, Sevastopol

参考

  1. Бакуева Я.И., Козлов И.Е. Характеристики короткопериодных внутренних волн в Южном океане по данным спутниковых РСА Sentinel 1A/B // Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19. № 2. С. 201–211. https://doi.org/10.21046/2070-7401-2022-19-2-201-211
  2. Власенко В.И. Нелинейная модель генерации бароклинных приливов над протяженными неоднородностями рельефа дна // Морской гидрофизический журнал. 1992. № 6. С. 9–16. Physical Oceanography (Morskoy gidrofizicheskiy zhurnal). 1992. V. 3. P. 417–424.
  3. Ashcroft W. Crustal structure of the South Shetland Islands and Bransfield strait // British Antarctic Survey. 1972. № 66. 43 p.
  4. Bell T.H. Jr. Topographically generated internal waves in the open ocean // Journal of Geophysical Research: Oceans. 1975. V. 80. № 3. P. 320–327. https://doi.org/10.1029/JC080i003p00320
  5. Boyce F. Internal waves in the Straits of Gibraltar // Deep Sea Research. 1975. V. 22. № 9. P. 597–610. https://doi.org/10.1016/0011-7471(75)90047-9
  6. Egbert G., Bennett A., Foreman M. TOPEX/POSEIDON tides estimated using a global inverse model // Journal of Geophysical Research: Oceans. 1994. V. 99. № C12. P. 24821–24852. https://doi.org/10.1029/94JC01894
  7. Egbert G., Erofeeva S. Efficient inverse modeling of barotropic ocean tides // Journal of Atmospheric and Oceanic Technology. 2002. V. 19. № 2. P. 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  8. Frey D., Krechik V., Morozov E. et al. Water exchange between deep basins of the Bransfield Strait // Water. 2022. V. 14. P. 3193. https://doi.org/10.3390/w14203193
  9. Garcıa M., Castro C.G., Rios A.F. et al. Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96 // Deep Sea Research Part II: 2002. V. 49. № 4–5. P. 585–602. https://doi.org/10.1016/S0967-0645(01)00113-8
  10. Garrett C., Munk W. Internal waves in the ocean // Annual review of fluid mechanics. 1979. V. 11. № 1. P. 339–369.
  11. Garrett C., Munk W. Space-time scales of internal waves: A progress report // Journal of Geophysical Research: Oceans. 1975. V. 80. № 3. P. 291–297. https://doi.org/10.1029/JC080i003p00291
  12. Gerkema T., Zimmerman J. An introduction to internal waves // Lecture Notes, Royal NIOZ, Texel. 2008. 207 p.
  13. Gordon A., Nowlin W.D. Jr. The basin waters of the Bransfield Strait // Journal of Physical Oceanography. 1978. V. 8. № 2. P. 258–264. https://doi.org/10.1175/1520-0485(1978)008<0258: TBWOTB>2.0.CO;2
  14. Helfrich K., Melville W. Long nonlinear internal waves // Annual review of fluid mechanics. 2006. V. 38. № 1. P. 395–425. https://doi.org/10.1146/annurev.fluid.38.050304.092129
  15. Holm-Hansen O., Mitchell B. Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region // Deep Sea Research Part I. 1991. V. 38. № 8–9. P. 961–980. https://doi.org/10.1016/0198-0149(91)90092-T
  16. Khimchenko E., Frey D., Morozov E. Tidal internal waves in the Bransfield Strait, Antarctica // Russian Journal of Earth Sciences. 2020. V. 20. № 2. P. 2. https://doi.org/10.2205/2020ES000711
  17. Klinkhammer G.P., Chin C.S., Keller R.A. et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica // Earth and Planetary Science Letters. 2001. V. 193. № 3–4. P. 395–407. https://doi.org/10.1016/S0012-821X(01)00536-2
  18. Kozlov I., Zubkova E., Kudryavtsev V. Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations // IEEE Geoscience and Remote Sensing Letters. 2017. V. 14(11). P. 2047–2051. https://doi.org/10.1109/LGRS.2017.2749681
  19. Lawver L., Keller R., Fisk M., Strelin J. Bransfield Strait, Antarctic Peninsula active extension behind a dead arc // Backarc basins. Springer. 1995. P. 315–342.
  20. Marchenko A., Morozov E., Kozlov I., Frey D. High-amplitude internal waves southeast of Spitsbergen // Continental Shelf Research. 2021. V. 227. P. 104523. https://doi.org/10.1016/j.csr.2021.104523
  21. Morozov E. Semidiurnal internal wave global field // Deep Sea Research Part I: Oceanographic Research Papers. 1995. V. 42(1). P. 135–148. https://doi.org/10.1016/0967-0637(95)92886-c
  22. Morozov E., Kozlov I., Shchuka S., Frey D. Internal tide in the Kara Gates Strait // Oceanology. 2017. V. 57. № 1. P. 8–18. https://doi.org/10.1134/S0001437017010106
  23. Morozov E., Marchenko A., Filchuk K. et al. Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea // Applied Ocean Research. 2019. V. 87. P. 179–191. https://doi.org/10.1016/j.apor.2019.03.024
  24. Morozov E., Paka V., Bakhanov V. Strong internal tides in the Kara Gates Strait // Geophysical Research Letters. 2008. V. 35. P. L16603
  25. Morozov E., Parrilla-Barrera G., Velarde M., Scherbinin A. The Straits of Gibraltar and Kara Gates: A comparison of internal tides // Oceanologica Acta. 2003. V. 26. № 3. P. 231–241. https://doi.org/10.1016/S0399-1784(03)00023-9
  26. Morozov E.G., Pisarev S.V., Internal tides at the Arctic latitudes (numerical experiments) // Oceanology. 2002. V. 42. № 2. P. 153–161.
  27. Mukhametyanov R., Frey D., Morozov E. Currents in the Bransfield Strait based on geostrophic calculations and data of instrumental measurements // Izvestiya Atmos. Ocean. Phys. 2022. V. 58(5). P. 500–506.
  28. Niller P., Amos A., Hu J. Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region // Deep Sea Research Part I. 1991. V. 38. № 8–9. P. 943–959. https://doi.org/10.1016/0198-0149(91)90091-S
  29. Polukhin A., Morozov E., Tishchenko P. et al. Water structure in the Bransfield Strait (Antarctica) in January 2020: Hydrophysical, optical and hydrochemical features // Oceanology. 2021. V. 61. № 5. P. 632–644. https://doi.org/10.31857/S0030157421050105
  30. Savidge D., Amft J. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects // Deep Sea Research Part I. 2009. V. 56(10). P. 1633–1655. https://doi.org/10.1016/j.dsr.2009.05.011
  31. Susanto R., Mitnik L., Zheng Q. Ocean internal waves observed in the Lombok Strait // Oceanography. 2005. V. 18. № 4. P. 80–87.
  32. Wefer G., Fischer G., Füetterer D., Gersonde R. Seasonal particle flux in the Bransfield Strait, Antarctica // Deep Sea Research Part I. 1988. V. 35. № 6. P. 891–898. https://doi.org/10.1016/0198-0149(88)90066-0

补充文件

附件文件
动作
1. JATS XML
2.

下载 (961KB)
3.

下载 (104KB)
4.

下载 (1MB)
5.

下载 (647KB)
6.

下载 (415KB)
7.

下载 (214KB)
8.

下载 (38KB)
9.

下载 (250KB)
10.

下载 (94KB)
11.

下载 (1MB)
12.

下载 (555KB)
13.

下载 (58KB)

版权所有 © О.С. Мехова, Д.А. Смирнова, Е.Г. Морозов, С.А. Остроумова, Д.И. Фрей, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».