MICROSPORIDIA INFECTING BENEFICIAL INSECTS WHICH SERVE AS BIOLOGICAL CONTROL AGENTS
- Авторлар: Timofeev S.A.1, Sokolova Y.Y.2,3, Tokarev Y.S.1
-
Мекемелер:
- All-Russian Institute of Plant Protection
- National Institutes of Health
- NIDCD Advanced Imaging Core
- Шығарылым: Том 59, № 5 (2025)
- Беттер: 339–351
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0031-1847/article/view/355717
- DOI: https://doi.org/10.7868/S3034586325050017
- ID: 355717
Дәйексөз келтіру
Аннотация
This review presents up-to-date data on microsporidian infections in beneficial insects used to control agricultural pests. Among these biocontrol agents, microsporidia have been reported predominantly from hymenopteran parasitoids and predatory insects belonging to various orders, mainly Holometabola. Parasitoids can be infected by pathogens specific for their hosts or bear their own parasites. Infections with microsporidia may cause serious pathologic changes or remain benign, while still affecting population dynamics of the insect pests against which the biocontrol agents are applied.
Негізгі сөздер
Авторлар туралы
S. Timofeev
All-Russian Institute of Plant Protection
Email: ts-bio@ya.ru
St. Petersburg, Russia
Y. Sokolova
National Institutes of Health; NIDCD Advanced Imaging Core
Email: ts-bio@ya.ru
Bethesda, USA
Y. Tokarev
All-Russian Institute of Plant Protection
Хат алмасуға жауапты Автор.
Email: ts-bio@ya.ru
St. Petersburg, Russia
Әдебиет тізімі
- Becnel J.J., Andreadis T.G. 2014. Microsporidia in insects. In: Weiss L.M., Becnel J.J. (eds). Microsporidia: Pathogens of Opportunity, 1st ed. John Wiley and Sons Inc., New York, 521–570. https://doi.org/10.1002/9781118395264.ch21
- Bell H.A., Down R.E., Kirkbride-Smith A.E., Edwards J.P. 2004. Effect of microsporidian infection in Lacanobia oleracea (Lep., Noctuidae) on prey selection and consumption by the spined soldier bug Podisus maculiventris (Het., Pentatomidae). Journal of Applied Entomology 128 (8): 548–553. https://doi.org/10.1111/j.1439-0418.2004.00890.x
- Bjørnson S., Oi D. 2014. Microsporidia biological control agents and pathogens of beneficial insects. In: Weiss L.M., Becnel J.J. (eds). Microsporidia: Pathogens of Opportunity, 1st ed. John Wiley and Sons Inc., New York, 635–670. https://doi.org/10.1002/9781118395264.ch25
- Bjørnson S., Le J., Saito T., Wang H. 2011. Ultrastructure and molecular characterization of a microsporidium, Tubulinosema hippodamiae, from the convergent lady beetle, Hippodamia convergens Guérin-Méneville. Journal of Invertebrate Pathology 106: 280–288. https://doi.org/10.1016/j.jip.2010.11.002
- Bjørnson S., Steele T., Hu Q., Ellis B., Saito T. 2013. Ultrastructure and molecular characterization of the microsporidium Nosema chrysoperlae sp. nov., from the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) used for biological pest control. Journal of Invertebrate Pathology 114: 53–60. https://doi.org/10.1016/j.jip.2013.05.007
- Bojko J., Reinke A.W., Stentiford G.D., Williams B., Rogers M.S.J., Bass D. 2022. Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends in Parasitology 38: 642–659. https://doi.org/10.1016/j.pt.2022.05.007
- Boohene C., Geden C., Becnel J. 2003. Evaluation of remediation methods for Nosema disease in Muscidifurax raptor (Hymenoptera: Pteromalidae). Environmental Entomology 32: 1146–1153. https://doi.org/10.1603/0046-225X-32.5.1146
- Braglia C., Cutajar S., Magagnoli S., Asciano D., Burgio G., Di Gioia D., Baffoni L., Alberoni D. 2025. The ground beetle Poecilus (Carabidae) gut microbiome and its functionality. Microbial Ecology 88 (1): 83. https://doi.org/10.1007/s00248-025-02579-0
- Brooks W.M., Cranford J.D. 1972. Microsporidoses of the hymenopterous parasites Campoletis sonorensis and Cardiochiles nigriceps, larval parasites of Heliothis species. Journal of Invertebrate Pathology 20: 77–94. https://doi.org/10.1016/0022-2011(72)90085-7
- Canning E.U., Curry A., Cheney S.A., Lafranchi-Tristem N.J., Iwano H., Ishihara R. 1999. Nosema tyriae n. sp. and Nosema sp., microsporidian parasites of cinnabar moth Tyria jacobaeae. Journal of Invertebrate Pathology 74: 29–38. https://doi.org/10.1006/jipa.1999.4861
- Cossentine J.E., Lewis L.C. 1986. Impact of Vairimorpha necatrix and Vairimorpha sp. (Microspora: Microsporida) on Bonnetia comta (Diptera: Tachinidae) within Agrotis ipsilon (Lepidoptera: Noctuidae) hosts. Journal of Invertebrate Pathology 47: 303–309. https://doi.org/10.1016/0022-2011(86)90100-X
- De Jong P.W., van Lenteren J.C., Raak-van den Berg C.L. 2013. Comment on “Invasive harlequin ladybird carries biological weapons against native competitors”. Science 341: 1342b. https://doi.org/10.1126/science.1241745
- Down R.E., Bell H.A., Matthews H.J., Kirkbride-Smith A.E., Edwards J.P. 2004. Dissemination of the biocontrol agent Vairimorpha necatrix by the spined soldier bug Podisus maculiventris. Entomol. Exp. Appl. 110 (2): 103–114. https://doi.org/10.1111/j.0013-8703.2004.00122.x
- Fletcher A., Bjørnson S. 2018. The influence of microsporidian pathogens from commercially available lady beetles on larval development of the green lacewing Chrysoperla carnea in the absence of infection. Journal of Invertebrate Pathology 153: 1–5. https://doi.org/10.1016/j.jip.2018.02.001
- Futerman P.H., Layen S.J., Kotzen M.L., Franzen C., Kraaijeveld A.R., Godfray H.C.J. 2006. Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids. Parasitology 132: 479–492. https://doi.org/10.1017/s0031182005009339
- Gegner T., Otti O., Tragust S., Feldhaar H. 2015. Do microsporidia function as “biological weapon” for Harmonia axyridis under natural conditions? Insect Science 22: 353–359. https://doi.org/10.1111/1744-7917.12224
- Hajek A.E., Solter L.F., Maddox J.V., Huang W.F., Estep A.S., Krawczyk G., … Becnel J.J. 2018. Nosema maddoxi sp. nov. (Microsporidia, Nosematidae), a widespread pathogen of the green stink bug Chinavia hilaris (Say) and the brown marmorated stink bug Halyomorpha halys (Stål). Journal of Invertebrate Pathology 156: 15–20. https://doi.org/10.1111/jeu.12475
- Hamm J.J., Nordlund D.A., Mullinix Jr. B.G. 1983. Interaction of the microsporidium Vairimorpha sp. with Microplitis croceipes (Cresson) and Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), two parasitoids of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environmental Entomology 12: 1547–1550. https://doi.org/10.1093/ee/12.5.1547
- Harris P., Wilkinson A.T.S., Neary M.E., Thompson L.S. 1971. Senecio jacobaeae L., tansy ragwort (Compositae). Biological control programs against insects and weeds in Canada 1959–1968. Slough: Commonwealth Institute of Biological Control.
- Hawkes R.B. 1973. Natural mortality of cinnabar moth in California. Annals of the Entomological Society of America 66: 137–146. https://doi.org/10.1093/aesa/66.1.137
- Hoch G., Schopf A., Maddox J.V. 2000. Interactions between an entomopathogenic microsporidium and the endoparasitoid Glyptapanteles liparidis within their host, the gypsy moth larva. Journal of Invertebrate Pathology 75: 59–68. https://doi.org/10.1006/jipa.1999.4894
- Huger A.M., Neuffer G. 1978. Infection of the braconid parasite Ascogaster quadridentata (Hymenoptera: Braconidae) by a microsporidian of its host Laspeyresia pomonella. Zeitschrift für Angewandte Entomologie 180: 105–106.
- Huang Q., Hu W., Meng X., Chen J., Pan G. 2024. Nosema bombycis: A remarkable unicellular parasite infecting insects. Journal of Eukaryotic Microbiology 71 (5): e13045. https://doi.org/10.1111/jeu.13045
- Idris A.B., Zainal-Abidin B.A., Noraini I., Hussan A.K. 2001. Diadegma semiclausum as a possible factor for the horizontal transmission of microsporidial disease of diamondback moth Plutella xylostella L. Pakistan Journal of Biological Sciences 4: 1353–1356. http://dx.doi.org/10.3923/pjbs.2001.1353.1355
- Kermani N., AbuHassan Z.-A., Suhaimi A., Abuzid I., Ismail N.F., et al.,2014. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae) infected with Nosema sp. (Microsporidia: Nosematidae): Implications in integrated pest management strategy. PLoS ONE 9 (6): e100671. https://doi.org/10.1371/journal.pone.0100671
- Malysh J.M., Ignatieva A.N., Artokhin K.S., Frolov A.N., Tokarev Y.S. 2018. Natural infection of the beet webworm Loxostege sticticalis L. (Lepidoptera: Crambidae) with three Microsporidia and host switching in Nosema ceranae. Parasitology Research 117 (9): 3039–3044. https://doi.org/10.1007/s00436-018-5987-3
- Marín-García P.J., Peyre Y., Ahuir-Baraja A.E., Garijo M.M., Llobat L. 2022. The role of Nosema ceranae (Microsporidia: Nosematidae) in honey bee colony losses and current insights on treatment. Veterinary Sciences 9 (3): 130. https://doi.org/10.3390/vetsci9030130
- Nealis V.G., Smith S.M. 1987. Interaction of Apanteles fumiferanae (Hymenoptera: Braconidae) and Nosema fumiferanae (Microsporidia) parasitizing spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae). Canadian Journal of Zoology 65: 2047–2050. https://doi.org/10.1139/z87-312
- Paes J.P.P., Carvalho V.R., Souza A.R., Wilcken R.F., Bueno R. 2019. Infection by the microsporidium of Clado Nosema/Vairimorpha in pupal parasitoids. Anais da Academia Brasileira de Ciências 91: e20180326. https://doi.org/10.1590/0001-3765201920180326
- Pan G., Bao J., Ma Z., Song Y., Han B., Ran M., Li C., Zhou Z. 2018. Invertebrate host responses to microsporidia infections. Developmental and Comparative Immunology 83: 104–113. https://doi.org/10.1016/j.dci.2018.02.004
- Park E., Poulin R. 2021. Revisiting the phylogeny of microsporidia. International Journal for Parasitology 51: 855–864. https://doi.org/10.1016/j.ijpara.2021.02.005
- Pettey F.W. 1948. The biological control of prickly pears in South Africa. Science Bulletin of the Department of Agriculture and Forestry, Union of South Africa 271: 1–163.
- Rumiantseva A.S., Ignatieva A.N., Grushevaya I.V., Utkuzova A.M., Binitskaya N.V., Kononchuk A.G., Kozlova E.G., Khodzhash A.A., Tokarev Yu.S. 2024. Horizontal and vertical transmission of microsporidia Nosema pyrausta and Nosema bombycis in the predatory bug Podisus maculiventris (Hemiptera: Pentatomidae). Acta Biologica Sibirica 10: 1625–1645. https://doi.org/10.5281/zenodo.14356492
- Sloggett J.J. 2013. Comment on “Invasive harlequin ladybird carries biological weapons against native competitors”. Science 341: 1342c. https://doi.org/10.1126/science.1241827
- Solter L.F., Kyei-Poku G.K., Johny S. 2013. Comment on “Invasive harlequin ladybird carries biological weapons against native competitors”. Science 341: 1342c. https://doi.org/10.1126/science.1241600
- Steele T., Bjørnson S. 2014. Nosema adaliae sp. nov., a new microsporidian pathogen from the two-spotted lady beetle Adalia bipunctata L. (Coleoptera: Coccinellidae) and its relationship to microsporidia that infect other coccinellids. Journal of Invertebrate Pathology 115: 108–115. https://doi.org/10.1016/j.jip.2013.10.009
- Steele T., Bjørnson S. 2019. Effects of microsporidiosis and food availability on the two-spotted lady beetle Adalia bipunctata L. and convergent lady beetle Hippodamia convergens Guérin-Méneville. Journal of Invertebrate Pathology 161: 7–13. https://doi.org/10.1016/j.jip.2019.01.004
- Timofeev S.A., Ignatieva A.N., Dolgikh V.V. 2023. Nosemosis type C of bees caused by microsporidia Nosema (Vairimorpha) ceranae: current views, pathogenesis, prevention, diagnosis and treatment (review). Sel’skokhozyaistvennaya biologiya 58 (2): 274–287. https://doi.org/10.15389/agrobiology.2023.2.274eng
- Tokarev Y.S., Kireeva D.S., Ignatieva A.N., Ageev A.A., Gerus A.V., Yaroslavtseva O.N., Kononchuk A.G., Malysh J.M. 2022. Ecological vs physiological host specificity: the case of the microsporidium Nosema pyrausta (Paillot) Weiser, 1961. Acta Biologica Sibirica 8: 297–316. https://doi.org/10.14258/abs.v8.e19
- Vavra J., Lukeš J. 2013. Microsporidia and “the art of living together”. Advances in Parasitology 82: 253–319. https://doi.org/10.1016/B978-0-12-407706-5.00004-6
- Vavra J., Larsson J.I.R. 2014. Structure of Microsporidia. In: Weiss L.M., Becnel J.J. (eds). Microsporidia: Pathogens of Opportunity, 1st ed. Wiley-Blackwell, New York, 1–70. https://doi.org/10.1002/9781118395264.ch2
- Vilcinskas A., Stoecker K., Schmidtberg H., Röhrich C.R., Vogel H. 2013. Invasive harlequin ladybird carries biological weapons against native competitors. Science 340: 862–863. https://doi.org/10.1126/science.1234032
- Xiong X., Geden C.J., Bergstralh D.T., White R.L., Werren J.H., Wang X. 2023. New insights into the genome and transmission of the microsporidian pathogen Nosema muscidifuracis. Frontiers in Microbiology 14: 1152586. https://doi.org/10.3389/fmicb.2023.1152586
- Yaman M., Aydin Ç., Linde A., Radek R. 2022. A new microsporidian pathogen, Vairimorpha gastrophysae sp. nov., isolated from Gastrophysa viridula (Coleoptera: Chrysomelidae). European Journal of Protistology 86: 125913. https://doi.org/10.1016/j.ejop.2022.125913
- Yaman M., Eroğlu M., Radek R. 2016. Occurrence of a microsporidium in the predatory beetle Calosoma sycophanta L. (Coleoptera: Carabidae). Turkish Journal of Agriculture and Forestry 40 (3): 406–412. https://doi.org/10.3906/tar-1507-42
Қосымша файлдар

