— ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ПОЧВ ВТОРИЧНЫХ ЛЕСНЫХ ЭКОСИСТЕМ

УДК 631.4

ПУЛЫ И ПОТОКИ УГЛЕРОДА В ХВОЙНО-ЛИСТВЕННОМ ЛЕСУ И НА ВЫРУБКЕ

© 2024 г. А.А. Дымов^{а, *} (http://orcid.org/0000-0002-1284-082X),

А. Ф. Осипов^а (http://orcid.org/0000-0003-1563-8587),

В. В. Старцев^а (http://orcid.org/0000-0002-6425-6502),

H. M. Γορбαч^a (http://orcid.org/0000-0002-5099-6868),

Д. А. Севергина^а (http://orcid.org/0000-0002-3464-2744),

С.А. Огородняя^b (https://orcid.org/0000-0002-7612-2544),

И. Н. Кутявин^а (https://orcid.org/0000-0002-7840-1934),

A. В. Манов^а (https://orcid.org/0000-0002-5070-0078)

⁴Институт биологии ФИЦ Коми научного центра УрО РАН, ул. Коммунистическая, 28, Сыктывкар, 167982 Россия ^bФакультет почвоведения МГУ им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: aadymov@gmail.com, dymov@ib.komisc.ru

> Поступила в редакцию 08.02.2024 г. После доработки 13.06.2024 г. Принята к публикации 14.06.2024 г.

Представлены результаты количественной оценки пулов и потоков углерода в среднетаежном хвойно-лиственном лесу Республики Коми и их изменений на первый год после сплошной рубки. Показано, что в исходном лесу аккумулировалось до 14.7 кг C/m^2 . Основные запасы сосредоточены в биомассе древостоя (62.4%), почве (35.5%), биомассе растений напочвенного покрова (1.1%) и крупных древесных остатках (1.0%). В процессе рубки в составе стволовой древесины выносится 6.6 кг С/м² (44.8% от всех запасов углерода экосистемы или 71.8% от углерода фитомассы древостоя). На первый год после рубки в экосистеме выявлено 8.1 кг С/м². Из них 7.1% запасов углерода приходится на лесную растительность, 66.8% (5.4 кг С/м²) сосредоточено в почве. На вырубке существенно увеличивается доля крупных древесных остатков 1.9 кг С/м² (23.4% запасов экосистемы) за счет появления образовавшихся в результате рубки порубочных остатков, которые в булушем окажут влияние на эмиссию диоксида углерода в атмосферу с ее территории. В результате сплошной рубки поступление древесного опада на поверхность почвы сокращается в 42 раза. На вырубке выявлено незначительное ($\approx 10\%$) увеличение эмиссии углекислого газа с поверхности почвы. Рубки приводят к уменьшению выноса углерода из подстилок в составе лизиметрических вод. Полученные данные найдут применение при оценке влияния сплошных рубок на углеродный цикл таежных экосистем.

Ключевые слова: круговорот углерода, бореальные леса, запасы углерода, лесозаготовительные мероприятия, дыхание почвы

DOI: 10.31857/S0032180X24110084, EDN: JOLIOK

ВВЕДЕНИЕ

Леса Российской Федерации содержат значительное количество углерода [20]. Основные его запасы в таежных экосистемах сосредоточены в почвах, древесной растительности, растениях напочвенного покрова, крупных древесных остатках [8]. Лесозаготовительные мероприятия

существенно изменяют лесные экосистемы [9, 16, 23, 28]. Единичные работы, показывающие изменение углеродного баланса бореальных лесов [14, 29, 52] выявили, что территории вырубок в первые два десятилетия восстановительной сукцессии являются источником углекислого газа в атмосферу. При существующем направлении развития

общества на смягчение климатических изменений, особый интерес приобретают лесоклиматические проекты, связанные с уменьшением поступления и секвестрирования излишков парниковых газов из атмосферы [34, 35, 41]. К настоящему времени практически отсутствуют количественные оценки влияния заготовки древесины на баланс углерода в экосистемах. Лесохозяйственные мероприятия будут важнейшим фактором, регулирующим распределение углерода по различным пулам в лесных экосистемах [44]. При этом данные по прямым определениям изменений пулов углерода различных пулов экосистем естественного леса и после рубки, проведенных на одном и том же участке, носят единичный характер [19, 29].

Следует отметить, что динамику пула углерода фитомассы на первых этапах развития послерубочного сообщества можно оценивать по таблицам хода роста [18], тогда как изменение содержания углерода в составе почвенного органического вещества (ПОВ) и крупных древесных остатках (КДО) освещено недостаточно. Несмотря на относительное постоянство ПОВ, его содержание в лесной подстилке и верхних горизонтах почв может меняться после рубки леса, в связи с переувлажнением и приносом дополнительного органического вещества в виде порубочных остатков [11]. Поступление растительного опада, поток растворенного органического углерода (РОУ) с лизиметрическими водами вглубь почвенного профиля [43], эмиссия СО₂ с поверхности почвы являются основными потоками углерода, которые обусловливают процесс его накопления и трансформации в почвах [1, 36]. Вместе с тем оценки влияния сплошных рубок на эти потоки, в том числе на начальных стадиях восстановительной сукцессии, единичны [21, 25, 49]. Получение экспериментальных данных позволит разрабатывать и верифицировать модели динамики для определения реакции ПОВ на хозяйственную деятельность человека, в том числе с учетом современных климатических изменений [45, 46].

Цель работы — оценить изменения пулов и потоков углерода в среднетаежном хвойно-лиственном насаждении после сплошной рубки леса.

ОБЪЕКТЫ И МЕТОДЫ

Исследования выполнены в подзоне средней тайги Республики Коми в 2020—2021 гг. Климат района исследований умеренно континентальный, умеренно холодный. Среднегодовая температура воздуха составляет +0.4°С, среднемесячная температура в июле +16.7°С, в январе — -15.2°С. Годовое количество осадков 560 мм, испаряемость 442 мм, коэффициент увлажнения составляет 1.27, что свидетельствует об избыточном увлажнении [2]. Территория исследования относится к Вычегодско-Мезенской равнине, почвообразующими

породами которой служат водно-ледниковые суглинисто-глинистые однородные и слоистые отложения.

На исследуемом участке исходно развивался смешанный хвойно-лиственный лес на подзолистой почве. В год, предшествующий рубке (летний период 2020 г.), были проведены комплексные исследования по оценке содержания углерода в различных компонентах экосистем. В декабре 2020 г. была проведена сплошная рубка древостоя. В 2021 г. все исследования проведены повторно. Более подробно данные об участке исследования представлены ранее [13, 27, 38].

В исходном хвойно-лиственном насаждении в 2020 г. заложена постоянная пробная площадь (ППП) размером 200×20 м (площадью 0.4 га) по направлению с севера на юг. Согласно общепринятым методам на ППП проводился сплошной перечет деревьев по диаметру, высоте и состоянию. Подрост учитывали на трех участках (по краям и в центре ППП) общей площадью 0.15 га. Его оценивали по породе, высоте и категории состояния. К древостою относили деревья с диаметром ствола ≥6 см на высоте 1.3 м. Древесные растения меньшего диаметра относили к подросту. Возраст деревьев устанавливали путем подсчета годичных колец на подготовленных образцах древесины (кернах), отобранных из разных ступеней толщины на ППП с использованием возрастного бурава у 20% деревьев.

Для определения количества и биомассы оставленных после рубки деревьев было заложено четыре круговых площади размером 0.03 га. Запасы древесины живых деревьев рассчитывали с использованием Лесотаксационного справочника [18], а биомассу — применяя конверсионные коэффициенты, приведенные в работе [56]. Для перевода биомассы в запас углерода использовали коэффициенты [5]. При оценке выноса углерода в процессе рубки применяли допущение, что на лесосеке сохранены отдельные семенные деревья для дальнейшего воспроизводства, оставлены вершины и кроны деревьев, корни и пни. Вес пня принимали равным 10% от массы ствола [51].

На вырубке в 2021 г. был проведен перечет подроста на учетных площадках размером 1 × 1 м с чередованием пасека-волок в количестве 56 шт. [31]. На учетных площадках проводили детальное описание — последующего возобновления по породам, живого напочвенного покрова, кустарникового яруса. На каждой учетной площадке отмечали наличие или отсутствие порубочных остатков и крупных древесных остатков (КДО) (валеж, брошенная древесина, сухостой, пни), им присваивали стадии разложения по пятибалльной шкале [39]. На учетных площадках, заложенных на волоках, проведено подробное описание возобновления, измеряли

ширину и глубину колеи, наличие или отсутствие воды в колеях, количество порубочных остатков.

Оценку надземных запасов биомассы растений напочвенного покрова на вырубке и исходном лесу осуществляли методом укосов на площади 1/16 м² в 10-кратной повторности в каждом сообществе расположенные случайным образом. Образцы отбирали в конце июля, что соответствует периоду максимального развития биомассы [60]. В лабораторных условиях образцы разбирали по видам, а затем высушивали до абсолютно сухого состояния и взвешивали.

Оценку КДО (в том числе порубочных) остатков на вырубке проводили в августе на пяти прямоугольных площадках размером 0.1 га, расположенных перпендикулярно направлению волоков с захватом пасечных участков. На площадке проводили сплошной перечет КДО диаметром более 6 см. Учитывали порубочные остатки (вершины, сучья, ветви, измельченная неликвидная древесина), валеж, сухостой и пни, как унаследованные от материнского насаждения, так и появившиеся после рубки. У всех элементов КДО измеряли высоту/длину, для валежа и сухостоя определяли диаметр на высоте 1.3 м. для вершин и толстых ветвей – диаметр основания, пней, фрагментов валежа и неликвидной древесины – диаметры у основания и вершины. Запас древесины в валеже, сухостое, вершинах и крупных ветвях рассчитывали с использованием Лесотаксационного справочника [18]. Объем пней, фрагментов валежа и неликвидной древесины оценивали по формуле усеченного конуса. Для пересчета массы в запасы углерода использовали коэффициент 0.47 [48].

Почвенный разрез в исходном лесу был заложен в межкроновом пространстве, характеризуемом преобладанием типичных подзолистых почв. Классификационную диагностику почв выполняли с использованием Полевого определителя почв [33]. Химический анализ почв проводили в аккредитованной Экоаналитической лаборатории и отделе почвоведения ИБ ФИЦ Коми НЦ УрО РАН. Общее содержание углерода ($C_{\text{общ}}$) и азота ($N_{\text{общ}}$) в образцах почв опорных разрезов определяли на анализаторе EA-1100 (Carlo Erba). Плотность в органогенных и минеральных горизонтах определяли в 5-кратной повторности согласно [7]. Запасы углерода и азота рассчитывали по формуле согласно [40].

Древесный опад отбирали при помощи 30 опадоуловителей размером 0.25 м², расположенных случайным образом. В лесу было установлено 10, на вырубке 20 опадоуловителей. Наблюдения проводили в течение мая 2021—мая 2022 гг. В связи с невозможностью проведения годового цикла наблюдений до рубки, массу опада определяли в условно-фоновом насаждении, произрастающем рядом с вырубкой. Применение такого подхода

позволило исключить влияние погодных условий конкретного года на массу поступающего опада в связи с одинаковым периодом наблюдений [55]. В камеральных условиях собранные образцы разбирали по фракциям. При анализе полученных данных выделяли две группы фракций по скорости их разложения: активную (листья, хвоя, семена) и неактивную (ветви, кора) [15]. Труднодифференцируемые, сильноизмельченные образцы относили к фракции "прочие компоненты" [55]. Для перевода массы растительного органического вещества опада в запасы углерода использовали коэффициенты, свойственные отдельным его фракциям в регионе исследований [4, 10].

Лизиметры установили на месте опорного разреза в июле 2020 г. Откачку вод проводили ежемесячно в безморозный период. Лизиметрические воды откачивали из-под двух горизонтов (подстилки и элювиального горизонта). В исследуемых водах определяли общий объем воды и содержание углерода, азота на анализаторе TOC-VCPN (Shimadzu, Япония) с модулем TNM-1. На время проведения рубки лизиметры изымали и вновь ставили в мае 2021 г.

Эмиссию CO_2 (или величину дыхания почвы — SR) измеряли инфракрасным газоанализатором LI-COR 8100 (LI-COR Inc., CША) с почвенной камерой диаметром 20 см на стационарных основаниях высотой 10 см, которые были заглублены в лесную подстилку на 5 см в 6- и 7-кратной повторности на вырубке и в исходном лесу соответственно. Для расчета выноса углерода с дыханием почвы ($C-CO_2$) применяли уравнение Вант-Гоффа и среднесуточные данные непрерывных измерений температуры почвы для летних месяцев, вегетационного (май—сентябрь) и бесснежного (май—октябрь) периодов согласно:

$$SR_{period} = \sum_{n=1}^{n} SR_{10} Q_{10}^{(T\pi-10)/10},$$

где SR_{period} — поток $C-CO_2$ за временной интервал, г C/m^2 , SR_{10} — величина SR при температуре $10^{\circ}C$, Q_{10} — температурный коэффициент, Tп — среднесуточная температура почвы на глубине 10 см, измеренная метеостанциями HOBO (Onset, США). Значение SR_{10} составляло 1.94 и 2.29, г C/m^2 в сут, Q_{10} — 5.66 и 1.50 для исходного леса и вырубки соответственно [27]. Коэффициенты Q_{10} и SR_{10} — рассчитывали по уравнениям зависимости дыхания почвы от температуры [50].

Рассчитаны средние значения и стандартные ошибки, построены графики блоки для сравнения различий между участками исследования и медианных значений, разброса значений, диаграммы распределения. Тест Шапиро—Уилка использовали для оценки нормальности распределения исходных данных. Для попарных сравнений

применяли t-критерий Стьюдента (p_t). Статистическую обработку выполняли в Microsoft Excel 2010 и R 4.2.2 [56] и Statistica 10.0 при 95% уровне значимости.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Запасы углерода в древостое. Исходный лес был представлен разновозрастным хвойно-лиственным насаждением. Древесный ярус образован сосной обыкновенной (Pinus sylvestris L.), елью сибирской (Picea obovata Ledeb.), березой пушистой (Betula pubescens Ehrh.) и березой повислой (B. pendula Roth.). В качестве небольшой примеси присутствуют пихта сибирская (Abies sibirica Ledeb.) и осина (*Populus tremula* L.). Ярусность в древостое не выражена. Сухостой и валеж образуют преимущественно хвойные деревья с запасом $30 \pm 5 \,\mathrm{m}^3/\mathrm{ra}$. В подросте доминирует ель, с небольшой примесью березы и осины. В составе стволовой древесины сосредоточено $282 \pm 18 \text{ м}^3/\text{га}$, с преобладанием сосны (111 \pm 7 м³/га) и ели $(90 \pm 11 \text{ м}^3/\text{гa})$ и значительном присутствием березы (55 \pm 6 м³/га), осины (26 \pm 7 м³/га) и малым вкладом пихты $(0.03 \pm 0.003 \text{ м}^3/\text{га})$.

Формула состава подроста на вырубке – 54Oc44Б1Е1С. Наибольший индекс встречаемости подроста отмечается у осины, как на пасеках и

волоках (0.45-0.65), так и вырубке в целом, а наименьший — у хвойных видов (0-0.05).

Общая масса запасов органического вещества в исходном лесу в составе растущей древесины и КДО составляла 19.8 кг/м² или 9.3 кг С/м² (табл. 1). Ведущая роль принадлежала древостою (98%), на долю сухостоя приходилось 1.4, валежа — 0.2, подроста — $\leq 0.1\%$. Основным аккумулятором органического вещества в насаждении была сосна, накапливая 6.8 кг/м² или 3.2 кг С/м², далее по убыванию следуют ель (3.1 кг С/м²), береза (2.1 кг С/м²) и осина (0.8 кг С/м²).

Углерод в составе древесного опада. Поступление растительного опада является ключевым звеном круговорота веществ, связывающим биомассу и почву [57]. Этот процесс также служит одним из входящих параметров при моделировании временной динамики органического вещества в экосистемах после нарушений и при различных сценариях ведения лесного хозяйства [46].

Масса опада в ненарушенном насаждении составляет 347 г/м² в год. В составе опада доминируют активные фракции, составляющие 76% от общегодового объема опада. Представленные результаты являются типичными и близки к результатам, опубликованным ранее [10]. Удаление древесного яруса в результате рубки привело к значительному (в 42.2 раза) снижению от 169.8 до 4.0 г/м² поступления углерода с опадом древесных растений на

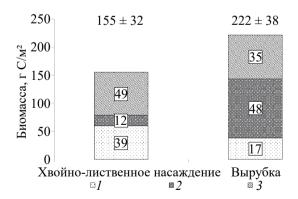
Таблица 1. Запасы биомассы и углерода в составе различных пород деревьев в исходном лесу (n = 3)

Элемент	Всего	Порода					
		сосна	ель	береза	осина	пихта	
Биомасса, кг/м ²							
Древостой	19.6 ± 2.4	6.8 ± 2.1	6.6 ± 1.0	4.4 ± 0.4	1.8 ± 0.5	0.002 ± 0.001	
Подрост живой	0.008	0.001*	0.007*	_	_	_	
Подрост мертвый	0.02	_	0.015*	0.003*	_	_	
Сухостой	0.25	0.15 ± 0.02	0.089 ± 0.009	0.007*	0.002*	_	
Валеж	0.04	0.019*	0.016*	0.002*	_	_	
Итого	19.8	7.0	6.7	4.4	1.8	0.002	
Углерод, кг C/м ²							
Древостой	9.2 ± 1.1	3.2 ± 1.0	3.1 ± 0.5	2.1 ± 0.2	0.8 ± 0.2	0.001 ± 0.001	
Подрост живой	0.004	0.0005*	0.003*	_	_	_	
Подрост мертвый	0.008	_	0.007*	0.001*	_	_	
Сухостой	0.12	0.07 ± 0.01	0.042 ± 0.005	0.003*	0.001*	_	
Валеж	0.02	0.009*	0.007*	0.001*	_	_	
Итого	9.3	3.3	3.2	2.1	0.8	0.001	

Примечание. Прочерк – не обнаружено. * – единичные экземпляры.

поверхность почвы вырубки хвойно-лиственного древостоя (табл. 2). Несмотря на это, структура древесного опада остается относительно постоянной. Так, легкоминерализуемая активная фракция, сформированная репродуктивными органами и ассимиляционным аппаратом хвойных и лиственных растений, образует 76% от массы опада как в ненарушенном насаждении, так и на вырубке. Вклад неактивной фракции (ветви, кора, шишки) составлял 18—19%, труднодиагностируемых остатков — 5—6%. На вырубке в первый год в составе опада отмечено появление отмерших органов рябины и ивы, принимающих активное участие в процессе восстановительной сукцессии ельника через смену производных лиственных и лиственно-хвойных насаждений.

Запасы углерода в биомассе растений напочвенного покрова. Достоверного увеличения биомассы надземных органов растений напочвенного покрова в результате сплошной рубки среднетаежного хвойно-лиственного насаждения в первый год не происходит ($p_t = 0.197$) несмотря на увеличение ее средних запасов на пасеках в 1.4 раза от 155 до 222 г/м 2 (рис. 1). В первую очередь отмечены структурные изменения во вкладе отдельных компонентов в общие запасы, обусловленные активным зарастанием вырубки травянистыми растениями. В ненарушенном хвойно-лиственном насаждении около половины биомассы сформировано мхами (зелеными и сфагновыми), тогда как на вырубке на их долю приходится 35%, хотя их масса не изменяется ($p_t = 0.497$). Если рассматривать


Таблица 2. Поступление углерода с древесным опадом на поверхность почвы хвойно-лиственного насаждения и на вырубке, среднее \pm ошибка среднего, Γ/M^2 в год

Фракция	Ненарушенні	ый лес $(n = 10)$	Вырубка ($n = 20$)	
	OB*	углерод	OB	углерод
Активные фракции, в том числе	265 ± 14	129 ± 10	6.3 ± 0.8	3.0 ± 0.4
листья осины	4.3 ± 1.2	2.1 ± 0.6	1.3 ± 0.5	0.64 ± 0.23
листья березы	125 ± 11	61 ± 6	2.5 ± 0.5	1.23 ± 0.22
листья рябины	_	_	0.10 ± 0.06	0.05 ± 0.03
хвоя ели	99 ± 7	49 ± 4	1.22 ± 0.22	0.60 ± 0.11
хвоя сосны	0.8 ± 0.5	0.40 ± 0.24	1.05 ± 0.19	0.52 ± 0.09
хвоя пихты	0.05 ± 0.04	0.02 ± 0.01	_	_
Семена древесных растений	36 ± 14	17 ± 7	0.08 ± 0.04	0.04 ± 0.02
Неактивные фракции, в том числе	67 ± 12	33 ± 7	1.48 ± 0.31	0.71 ± 0.14
ветви, в том числе	64 ± 12	32 ± 6	0.79 ± 0.21	0.40 ± 0.11
березы	17 ± 8	8 ± 4	0.20 ± 0.17	0.10 ± 0.09
ели	47 ± 12	24 ± 6	0.46 ± 0.11	0.23 ± 0.06
сосны	_	_	0.03 ± 0.02	0.02 ± 0.01
ивы	_	_	0.10 ± 0.10	0.05 ± 0.05
кора, в том числе	2.5 ± 0.8	1.15 ± 0.36	0.68 ± 0.19	0.31 ± 0.09
березы	0.9 ± 0.3	0.39 ± 0.13	0.20 ± 0.10	0.09 ± 0.05
осины	0.3 ± 0.3	0.14 ± 0.13	0.07 ± 0.07	0.03 ± 0.03
ели	1.0 ± 0.5	0.44 ± 0.24	0.20 ± 0.10	0.09 ± 0.04
сосны	0.40 ± 0.24	0.18 ± 0.11	0.21 ± 0.09	0.10 ± 0.04
Шишки	0.16 ± 0.16	0.07 ± 0.07	_	_
Прочие компоненты**	15.2 ± 2.1	7.2 ± 1.0	0.49 ± 0.06	0.23 ± 0.03
Общая масса опада	347 ± 16	170 ± 7	8.2 ± 1.0	4.0 ± 0.4

^{*} OВ — масса растительного органического вещества опада. ** Труднодиагностируемые растительные остатки. Примечание. Прочерк — не выявлено.

отдельные таксономические группы, то следует отметить увеличение массы зеленых мхов в 1.9 раза $(p_t = 0.024)$, тогда как роль сфагновых мхов не изменяется ($p_t = 0.860$). Вклад кустарничков в массе растений напочвенного покрова уменьшается от 39 до 17%, однако статистически значимого уменьшения их массы не наблюдается ($p_t = 0.240$). В первый год после сплошной вырубки происходит перераспределение роли отдельных видов в массе кустарничков. Так, отмечается увеличение доли черники (от 69 до 87%) и костяники (от 2 до 5%) с одновременным сокращением брусники от 29 до 7%. Наиболее значимые изменения в результате рубки выявлены в биомассе трав, которая увеличивается в 5.5 раз от 19.0 до 105.4 г/м² (p_t =0.001), формируя 48% от массы напочвенного покрова на пасеках вырубки. Полученные данные по надземной биомассе нижних ярусов растительности в исходном лесу сопоставимы с полученными ранее результатами для среднетаежных ельников черничных Республики Коми, которые составили 152–184 г/м² [3, 42]. Сведения по запасам органического вещества в надземных органах растений нижних ярусов на 3—10-летних вырубках ельников в регионе исследований варьируют в широких пределах от 165 до 401 r/m^2 [19, 24], что во многом связано с различиями в лесорастительных условиях исходных насаждений и временем наблюдения, прошедшим после сплошной рубки.

Запасы углерода в почвах. Под исходным лесом развивается типичная подзолистая почва (Albic Retisol (Siltic, Cutanic)) [32]. Лесная подстилка состоит из трех подгоризонтов, представленных растительными остатками, находящимися на различной степени разложения (O(L), O(F), O(H)) [6]. Под подстилкой формируется белесый (2.5Y7/2) элювиальный горизонт EL, представленный бесструктурным

Рис. 1. Углерод в составе биомассы растений напочвенного покрова в среднетаежном хвойно-лиственном насаждении и на вырубке: I — кустарнички; 2 — травы, в том числе низшие растения (хвощи, плауны, папоротники); 3 — мхи. Цифры над диаграммой — среднее \pm ошибка среднего, Γ/M^2 . Цифры на диаграмме — доля компонента в общих запасах, %.

или слабооструктуренным плитчатым суглинистым материалом. В горизонте обильно встречается окатанная порода, щебень и галька. Переход к субэлювиальному горизонту BEL постепенный, по утяжелению гранулометрического состава. Горизонт — от темно-коричневого до светло-серого цвета (2.5YR7/2), хорошо оструктурен и пронизан вертикальными языками элювиального горизонта с более легким супесчаным материалом. Под элювиальной толщей формируется коричневато-бурый (7.5YR3/4) среднесуглинистый хорошо выраженный текстурный горизонт BT с типичной для почв данного отдела многопорядковой структурой, с обилием кутан и скелетан.

Почва пасечного участка вырубки (около шести месяцев после рубки) морфологически близка к почве исходного леса. Отличия заключаются в поступлении на поверхность подстилки порубочных остатков, ветвей, хвои, листьев. Минеральные генетические горизонты не претерпели морфологических изменений, поскольку лесозаготовительная техника не затрагивала места заложения разрезов. При этом визуально ощущалось переувлажнение верхних минеральных горизонтов почв. Выявлено, что плотность горизонтов почвы пасечного участка после рубки близка к значениям почвы исходного леса. Плотность органогенного горизонта составляет 0.09 г/см³, минеральных горизонты — от 1.46 до 2.09 г/см³.

Запасы углерода в лесных почвах являются значительными, по различным оценкам в них сосредоточено от 30 до 60% запасов экосистем [57]. При этом углерод, депонированный в почвах, считается более стабильным по сравнению с углеродом, сосредоточенным в биомассе растений. Запасы углерода в почвах исходного леса составили $5.1\pm0.5~{\rm kr}~{\rm C/m^2}$ (табл. 3). При этом $1.9~{\rm kr}~{\rm C/m^2}$ запасов аккумулировано в подгоризонтах лесных подстилок, что составляет 37% от общих запасов, сосредоточенных в метровом слое почвы. П редставленные значения запасов углерода являются типичными для автоморфных подзолистых почв среднетаежной подзоны [12, 26, 54].

Почва пасечного участка сохраняет близкие значения запасов углерода: 5.4 кг С/м², при вкладе органогенных горизонтов около 36%. Отсутствие изменений связано с небольшим периодом, прошедшим с момента воздействия. Как показали предыдущие исследования [11], изменение запасов в ходе последующей сукцессии растительности будет зависеть от предрасположенности исследуемого ландшафта к заболачиванию. Около 17% от общей площади исследуемой лесосеки занимают волока, что в целом близко к оценкам, приведенным в работе [30]. Оценка запасов углерода, сосредоточенных в данных почвах, свидетельствует о незначительном изменении общих запасов. В исследуемых почвах запасы изменяются от 5.5±0.7 до 6.1±0.7 кг

Таблица 3. Запасы углерода в почвах исходного леса и вырубки

	·		Υ	r		
Горизонт	Мощность горизонта, см	Плотность, г/см³	Содержание углерода, %	Запасы, кг С/м²		
Исходная почва, 2020 г.						
O(L)	1	0.09 ± 0.03	42.9 ± 1.5	0.39±0.12		
O(F)	3	0.09 ± 0.03	44.5 ± 1.6	1.2±0.4		
O(H)	1	0.09 ± 0.03	34.4 ± 1.2	0.32±0.10		
EL	15	1.39 ± 0.12	0.45 ± 0.10	0.94±0.08		
EL2	25	1.83 ± 0.05	0.16 ± 0.04	0.73±0.02		
BEL	20	1.94 ± 0.06	0.21 ± 0.05	0.81±0.02		
BT	35	1.83 ± 0.06	0.12 ± 0.03	0.77±0.02		
Итого				5.1±0.5		
Пасечный участок, 2021 г.						
O(L)	1	0.09 ± 0.02	44.8 ± 1.6	0.39±0.11		
O(F)	3	0.09 ± 0.02	44.4 ± 1.6	1.15±0.33		
O(H)	1	0.09 ± 0.02	40.0 ± 1.4	0.35±0.10		
EL1	15	1.50 ± 0.10	0.31 ± 0.07	0.68±0.03		
EL2	20	1.50 ± 0.10	0.54 ± 0.12	1.65±0.05		
BEL	10	2.10 ± 0.10	0.11 ± 0.026	0.24±0.02		
BT	40	1.83 ± 0.06	0.12 ± 0.026	0.88±0.03		
Итого				5.4±0.5		
	Вол	ок, с учетом	колеи 27 см	'		
TUR	15	1.18 ± 0.22	2.20 ± 0.3	3.9±0.7		
EL	5	1.92 ± 0.07	0.27 ± 0.06	0.26±0.01		
BEL	10	1.89 ± 0.02	0.18 ± 0.04	0.34±0.01		
BT	20	1.84 ± 0.03	0.15 ± 0.03	0.55±0.01		
BT	23	1.84 ± 0.03	0.11 ± 0.026	0.48±0.01		
Итого				5.5±0.7		
Волок, без учета глубины колеи						
TUR	15	1.18 ± 0.22	2.20 ± 0.03	3.9±0.7		
EL	5	1.92 ± 0.07	0.27 ± 0.06	0.26±0.01		
BEL	10	1.89 ± 0.02	0.18 ± 0.04	0.34±0.01		
BT	20	1.84 ± 0.03	0.15 ± 0.03	0.55±0.01		
BT	50	1.84 ± 0.03	0.11 ± 0.026	1.04±0.02		
Итого				6.10±0.7		

С/м², что соответствует значениями характерным для почвы исходного леса. Но при этом турбирование верхних минеральных горизонтов будет приводить к перераспределению углерода между минеральными и подстилочными горизонтами. Полное перемешивание подстилок и верхних минеральных горизонтов приводит к возрастанию запасов углерода, сосредоточенного в верхнем турбированном горизонте (TURcwd), обогащенном, в том числе, порубочными остатками. В турбированном детритном горизонте находится 3.9 ± 0.7 кг С/м², что составляет около 70% от общих запасов углерода почв в метровой толще. При таком типе воздействия происхолит возрастание солержания углерода, находящегося в составе свободного и окклюдированного органического вещества [12]. В среднем глубина колей при десяти проходах форвардера, являющихся наиболее типичными для территории вырубки, составляет 27 см. Полевые наблюдения позволили выявить, что в весенний и осенний периоды, а также во время или после сильных дождей, в колеях может происходить застой влаги. Можно предположить, что почвы волоков будут характеризоваться отличным от пасечных участков водным и температурным режимом. Отмечено, что на первый год после рубки критичных изменений запасов углерода почв не происходит, но при этом на 17–20% плошади лесосек (даже при зимней рубке) наблюдается потеря стабильности органического вещества, динамика изменений которого в дальнейшем будет существенно отличаться как от исходного состояния, так и почв пасечных участков.

Запасы углерода в крупных древесных остатках. КДО в исходном лесу преимущественно представлены сухостоем (79.1%), валежом (11.5%) и старыми пнями (9.5 (%). Общее количество углерода, сосредоточенное в КДО, составляет 0.15 кг С/м². Лесозаготовительные мероприятия приводят к значительной трансформации данного пула [22]. В КДО на вырубке сконцентрировано 1.88 кг С/м². Большая часть углерода КДО (50.8%) образована порубочными остатками, которые представлены всеми породами, произраставшими в насаждении до рубки. Около трети углерода КДО (32.8% от запаса углерода КДО) сосредоточено во вновь образованных пнях. Валеж (10.2% от запаса углерода КДО) представлен, как унаследованными от материнского насаждения выпавшими деревьями ели и осины, так и новообразованными элементами, появившимися в результате ветровала оставленных тонкомерных деревьев ели и березы. Сухостой (5.3% от запаса углерода КДО) образован деревьями ели преимущественно нижних ступеней толщины. Участие пней, унаследованных от материнского древостоя в запасах углерода КДО, невысоко и составляет 0.85% от общих запасов углерода КДО. Полученные данные несколько меньше запасов КДО, определенных для вырубки ельника, проведенной

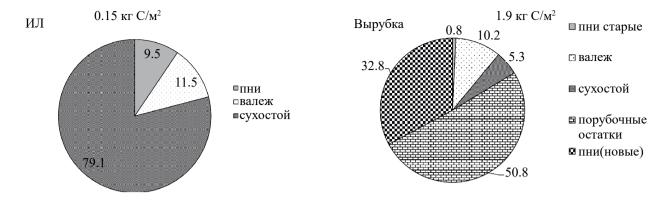
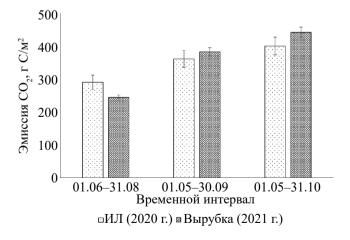



Рис. 2. Вклад углерода (%) в крупных древесных остатках в исходном лесу и на вырубке.

аналогичным способом в Усть-Куломском районе Республики Коми [24] и на вырубках сосняков лишайниковых среднего течения Енисея [29]. Это связано с большим количеством валежа, унаследованного от материнского насаждения, а вклад порубочных остатков здесь составил 29% (11% от запасов древостоя до рубки). Таким образом, КДО являются важным компонентом экосистем вырубок хвойных лесов, формируя большую часть надземных запасов органического вещества. Согласно литературным данным, именно пул углерода порубочных остатков будет существенно уменьшаться в первые десятилетия после рубки [29].

Эмиссия CO_2 с поверхности почв. С дыханием типичной подзолистой почвы исходного леса в течение летних месяцев 2020 г. выделилось 291 ± 22 г C/m^2 , вегетационного периода -361 ± 26 , а с мая по октябрь -400 ± 27 г C/m^2 (рис. 3). В первый год после сплошной рубки поток $C-CO_2$ в атмосферу с июня по август сократился в 1.2 раза ($p_t = 0.001$), тогда как для остальных расчетных

Рис. 3. Поток $C-CO_2$ с поверхности исходного хвойно-лиственного леса (ИЛ) и в первый год после его сплошной рубки.

периодов достоверных различий не выявлено $(p_t > 0.05)$. Сопоставимые величины для бесснежного и вегетационного периодов для исходного и послерубочного сообщества во многом объясняются активной деструкцией в первый год легкоразлагаемых растительных остатков (тонкие корни, листва), поступивших в результате рубки. В работах [5, 17, 47, 53] представлено, что в первый год теряется порядка 16-25% от массы хвои ели и листьев осины, больше половины веса листьев березы и более 70% от массы углерода и тонких (<2 мм в диаметре) корней деревьев сосны, с дальнейшим снижением скорости деструкции на второй год экспозиции. Как было показано ранее [27], весна 2021 г. характеризовалась ранним сходом снега и теплыми погодными условиями, что в сочетании с достаточной влажностью почвы верхних горизонтов, где происходит разложение и сосредоточены тонкие корни растений, уже в мае привело к активному поступлению диоксида углерода в атмосферу. Снижение темпов поступления С-СО, в атмосферу в летние месяцы первого года после рубки во многом обусловлено отсутствием дыхания корней, которое в полной мере не компенсировалось деструкцией отмершего в результате лесозаготовки растительного органического вещества.

Углерод в составе почвенных вод. Состав лизиметрических вод исходного леса является типичным для лесов рассматриваемого региона [37]. Максимальными концентрациями углерода и азота характеризуются лизиметрические воды, собранные из-под подстилок. В водах из элювиального горизонта содержание рассматриваемых элементов существенно меньше. Содержание углерода в подстилочных водах исходного леса варьирует от 49 до 58 мг/дм³. Максимальные концентрации характерны для сентября, увеличение происходит за счет неорганического углерода. Воды, просачивающиеся через элювиальный горизонт, характеризуются содержанием общего углерода от 10 до 98 мг/дм³. Максимальное содержание характерно для

сентябрьских вод, в которых также выявлено существенное увеличение содержания неорганического углерода до 36 мг/дм³.

После рубки наблюдается уменьшение содержания водорастворимого органического углерода в лизиметрических водах, как из подстилки, так и элювиального горизонта. Концентрация общего углерода в подстилочных водах варьирует от 17 до 32 мг/дм³. Уменьшение наблюдается для всех водорастворимых компонентов органического вещества. Содержание водорастворимого неорганического углерода изменялось от <0.1 до 3.8 мг/дм³. Лизиметрические воды из элювиальных горизонтов почвы вырубки характеризовались меньшим (от 15.2 до 24.0 мг/дм³) разбросом значений в ходе вегетационного периода, а содержание неорганического углерода от 0.36 до 3.8 мг/дм³, без значительного возрастания в осенние месяцы.

Более ясную картину дает пересчет концентраций с учетом объемов вымываемой воды (табл. 4). Так, за наблюдаемый период из подстилки исходного леса вымыто 8.9 г С/м² общего углерода, из подзолистого 1.7 г С/м². Из подстилки почвы вырубки вымывается 6.3 г С/м², а из подзолистого горизонта 4.6 г C/м². Общие тенденции сопоставимы с результатами, опубликованными ранее для еловых лесов Мурманской области (8.4 г C/m^2), и несколько выше выноса из почв лесов Московской и Брянской областей -5.1-5.6 г С/м² [1]. Учитывая несколько отличающиеся периоды отбора в исходном лесу и на вырубке, прямое сравнение этих данных может быть затруднительно. Но при этом прослеживается четкая тенденция уменьшения выноса углерода в составе лизиметрических вод на вырубке из подстилки. Для подзолистого горизонта наоборот наблюдается увеличение выноса углерода. Вероятно, выявленные закономерности связаны с переувлажнением территории вырубки и возрастании периодов времени с застоем воды в верхних горизонтах по сравнению с исходным лесом.

Переувлажнение может быть связано как с удалением древостоя, выступающего в качестве мощных агентов транспирации влаги, так и с затруднением латерального стока в результате формирования колей и переуплотнения почв.

Баланс углерода в экосистеме исходного леса и на вырубке. В экосистеме исходного леса было сосредоточено 14.7 кг С/м² (рис. 4). Значительная часть пулов углерода была сосредоточена в составе фитомассы (62.4%). Метровая толща почвы (с учетом мощности подстилки) аккумулировала чуть больше трети запасов углерода (35.5%). Углерод в составе биомассы растений напочвенного покрова составляет около 1.1% или 0.16 кг С/м². Крупные древесные остатки в составе исходного леса представлены сухостоем, пнями и валежом с общим вкладом 0.15 кг С/м².

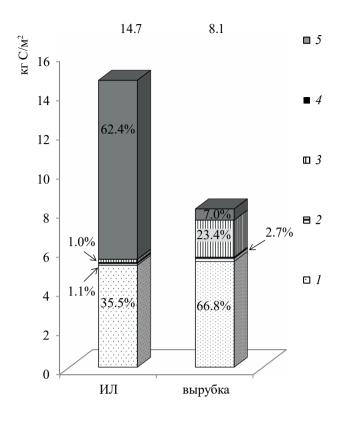

Рубка леса приводит к значительному уменьшению и перераспределению запасов углерода в рассматриваемых компонентах экосистем. Общий запас углерода на вырубке составляет 8.1 кг C/м^2 . Показано, что в составе стволовой древесины с вырубки выносится 6.6 кг C/m^2 , что составляет 44.84%от запасов углерода исходной экосистемы или 71.8% от углерода биомассы древостоя. В экосистеме вырубки лишь 7.1% запасов углерода сосредоточено в составе лесной растительности. Запас углерода, сосредоточенного в составе почв, практически не изменяется при рубке. Но при этом вклад запасов углерода почв в общие запасы углерода экосистем возрастает до 66.8%. Поступление порубочных остатков и оставление пней приводит к существенному увеличению доли крупных древесных остатков до 23.4% (1.9 кг C/м²). Более половины запасов КДО представлены порубочными остатками и почти треть (32.8%) вновь образованными пнями. На вырубке несколько увеличивается содержание углерода биомассы растений напочвенного покрова до 0.222 кг C/м^2 (или 2.7% от общих запасов углерода экосистемы).

Таблица 4. Потоки углерода в составе древесного опада, эмиссии углерода с поверхности почв и лизиметрических вод

Поток	Исходный лес	Вырубка	Исходный лес	Вырубка
	ΓC/M ²		%	
Древесный опад	169 ± 7	4.0 ± 0.4	29.4	0.9
Эмиссия с поверхности почв	400 ± 27	442 ± 16	69.2	97.8
Вынос с лизиметрическими водами из подстилки	8.3*	6.0**	1.4	1.3
Сумма углерода, задействованного в потоках	577	452	100.0	100.0

^{*} Лизиметрические воды в исходном лесу учитывали с июля по октябрь.

^{**} На вырубке учитывали лизиметрические воды с июня по сентябрь.

Рис. 4. Вклад углерода отдельных пулов в исходном лесу (ИЛ) и на вырубке: 1 — запасы в почвах; 2 — биомасса растений напочвенного покрова; 3 — крупные древесные остатки (сухостой, валеж, пни; на вырубке добавляются порубочные остатки, в том числе вновь образованные пни); 4 — запасы в подросте; 5 — запасы в древостое.

Ранее для среднетаежных ельников на болотно-подзолистых почвах в Республики Коми установлено, что при сплошной рубке с хлыстовой вывозкой древесины выносится 40—44% от углерода, накопленного в биомассе древостоя [19]. Таким образом, рубку леса не стоит рассматривать только как вынос углерода из экосистемы, так как его значительная часть остается в экосистеме и, совместно с другими элементами минерального питания, вовлекается в биологический круговорот с последующим поколением возобновляющихся древесных растений.

Потоки углерода в исходном лесу и на вырубке. На поверхность ненарушенного насаждения в составе древесного опада поступает 170 г С/м² с преобладанием активных фракций опада. Рубка древостоя приводит к существенному уменьшению поступления углерода на поверхность почв в виде различных фракций опада. При этом общее количество углерода, поступающего на поверхность почв в составе древесного опада, уменьшается в 42 раза. Эмиссия углекислого газа с поверхности почв вырубки возрастает примерно на 10% по

сравнению с почвой исходного леса. Наибольшей неопределенностью характеризуется вынос углерода в составе лизиметрических вод. Проведенные исследования позволяют выявить динь тенленнии к уменьшению выноса углерода в составе лизиметрических вод на вырубках. С одной стороны, это может быть связано с уменьшение корневых выделений деревьев, которые удалены с территории вырубки. С другой стороны, в первые годы после рубки наблюдаются процессы переувлажнения верхних горизонтов почв, что может приводить к застою влаги в верхних минеральных горизонтах, уменьшению вертикальной миграции. При этом с лизиметрическими водами из верхних горизонтов почв выноситься лишь несколько процентов от общих учитываемых потоков углерода как в исходном лесу, так и на вырубке.

ЗАКЛЮЧЕНИЕ

Проведенные комплексные исследования позволили выявить, что современные лесозаготовительные мероприятия с использованием колесной техники существенно изменяют запасы углерода в лесных экосистемах. В составе деловой древесины выноситься около 2/3 углерода биомассы, еще около 30% от углерода фитомассы представлено порубочными остатками, которые, вероятно, будут являться длительным источником увеличения поступления углекислого газа с территории вырубок в течение первых десятилетий. В первый год после сплошной рубки достоверные различия в надземной биомассе растений напочвенного покрова не выявлены, но отмечены структурные изменения во вкладе отдельных компонентов в общие запасы, обусловленные активным зарастанием вырубки травянистыми растениями. Показано, что происходит существенное перераспределение пулов углерода, на вырубке наблюдается увеличение запасов углерода в составе КДО. Запасы углерода в почвах практически не изменяются, но при этом на 20% территории происходит турбирование верхних горизонтов почв и соответственно может происходить изменение степени стабилизации органического вещества в верхних горизонтах. Неучтенным остается вынос углерода латеральным стоком по волокам. Установлено, что в результате сплошной рубки среднетаежного хвойно-лиственного леса поступление опада на поверхность почвы сократилось в 42 раза, тогда как поступление углерода в атмосферу с дыханием почвы в течение бесснежного (май-октябрь) незначительно возросло.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 23-74-10007, https://rscf.ru/project/23-74-10007/.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / Под ред. Лукиной Н.В. М.: Товарищество научных изданий КМК, 2018. 232 с.
- 2. Атлас Республики Коми по климату и гидрологии / Под ред. Таскаева А.И. М.: Наука, 1997. 116 с.
- 3. Биопродукционный процесс в лесных экосистемах Севера / Под ред. Бобковой К.С., Галенко Э.П. СПб.: Наука, 2001. 278 с.
- 4. *Бобкова К.С., Машика А.В., Смагин А.В.* Динамика содержания углерода органического вещества в среднетаежных ельниках на автоморфных почвах. СПб.: Hayka, 2014. 270 с.
- 5. *Бобкова К.С., Тужилкина В.В.* Содержание углерода и калорийность органического вещества в лесных экосистемах Севера // Экология. 2001. № 1. С. 69—71.
- 6. *Богатырев Л.Г., Демин В.В., Матышак Г.В., Сапожникова В.А.* О некоторых теоретических аспектах исследования лесных подстилок // Лесоведение. 2004. № 4. С. 17—29.
- 7. *Вадюнина А.Ф., Корчагина З.А.* Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
- 8. *Ведрова Э.Ф.* Биогенные потоки углерода в бореальных лесах Центральной Сибири // Известия РАН. Сер. Биологическая. 2011. № 1. С. 77-89.
- 9. Долгая В.А., Бахмет О.Н. Свойства лесных подстилок на ранних этапах естественного лесовозобновления после сплошных рубок в средней тайге Карелии // Лесоведение. 2021. № 1. 65—77. https://doi.org/10.31857/S0024114821010022
- 10. Дымов А.А., Бобкова К.С., Тужилкина В.В., Ракина Д.А. Растительный опад в коренном ельнике и лиственно-хвойных насаждениях // Известия высших учебных заведений. Лесной журнал. 2012. № 3. С. 7—18.
- 11. Дымов А.А. Влияние сплошных рубок в бореальных лесах России на почвы (обзор литературы) // Почвоведение. 2017. № 7. С. 787—798.
- 12. Дымов А.А. Сукцессии почв в бореальных лесах Республики Коми. М.: ГЕОС, 2020. 336 с. https://doi.org/10.34756/GEOS.2020.10.37828
- 13. Дымов А.А., Старцев В.В., Горбач Н.М., Севергина Д.А., Кутявин И.Н., Осипов А.Ф., Дубровский Ю.А. Изменения почв и растительности при разном числе проездов колесной лесозаготовительной техники (средняя тайга, Республика Коми) // Почвоведение. 2022. № 11. С. 1426—1441. https://doi.org/10.31857/S0032180X22110028

- 14. Замолодчиков Д.Г., Грабовский В.И., Шуляк П.П., Честных О.В. Влияние пожаров и заготовок древесины на углеродный баланс лесов России // Лесоведение. 2013. № 5. С. 36—49.
- Карпачевский Л.О. Лес и лесные почвы. М., 1981.
 263 с.
- 16. *Крышень А.М.* Растительные сообщества вырубок Карелии. М.: Наука, 2006. 262 с.
- 17. *Кузнецов М.А*. Влияние условий разложения и состава опада на характеристики и запас подстилки в среднетаежном чернично-сфагновом ельнике // Лесоведение. 2010. № 6. С. 54–60.
- 18. Лесотаксационный справочник для северо-востока европейской части Российской Федерации (нормативные материалы для Ненецкого автономного округа, Архангельской, Вологодской областей, Республики Коми). Архангельск: Правда Севера, 2012. 672 с.
- 19. Лиханова Н.В., Бобкова К.С. Пулы и потоки углерода в экосистемах вырубки ельников средней тайги Республики Коми // Теоретическая и прикладная экология. 2019. № 2. С. 91—100. https://doi.org/10.25750/1995-4301-2019-2-091-100
- 20. *Лукина Н.В.* Глобальные вызовы и лесные экосистемы // Вестник РАН. 2020. № 6. С. 528–532. https://doi.org/10.31857/S0869587320060080
- 21. *Молчанов А.Г., Курбатова Ю.А., Ольчев А.В.* Влияние сплошной вырубки леса на эмиссию CO₂ с поверхности почвы // Известия РАН. Сер. биологическая. 2017. № 2. С. 190—196.
- 22. *Мухортова Л.В., Ведрова Э.Ф.* Вклад крупных древесных остатков в динамику запасов органического вещества послерубочных лесных экосистем // Лесоведение. 2012. № 6. С. 55–62.
- 23. Наквасина Е.Н., Ильинцев А.С., Дунаева А.-А.П. Восстановительные сукцессии повреждений почвенного покрова при проведении рубок ухода в ельнике черничном северной тайги // Лесной вестник. 2021. Т. 25. № 6. С. 11—19. https://doi.org/10.18698/2542-1468-2021-6-11-19
- 24. Осипов А.Ф., Тужилкина В.В., Дымов А.А., Бобкова К.С. Запасы фитомассы и органического углерода среднетаежных ельников при восстановлении после сплошнолесосечной рубки // Известия РАН. Сер. Биологическая. 2019. № 2. С. 215—224. https://doi.org/10.1134/S0002332919020103
- 25. *Осипов А.Ф.* Влияние сплошной рубки на дыхание почвы среднетаежного сосняка черничного Республики Коми // Лесоведение. 2022. № 4. С. 395—406. https://doi.org/10.31857/S0024114822030111
- 26. *Осипов А.Ф.*, *Старцев В.В.*, *Прокушкин А.С.*, *Дымов А.А.* Запасы углерода в почвах лесов Красноярского края: анализ роли типа почвы и древесной породы // Теоретическая и прикладная экология. 2023. № 1. С. 67—74. https://doi.org/10.25750/1995-4301-2023-1-067-074

- 27. Осипов А.Ф., Старцев В.В. Дымов А.А. Влияние сплошной рубки на эмиссию СО₂ с поверхности подзолистой почвы среднетаежного хвойно-лиственного насаждения (Республика Коми) // Почвоведение. 2024. № 5. С. 728—737. https://doi.org/10.31857/S0032180X24050066
- 28. Оценка лесов Сибири в условиях глобальных изменений / Под ред. Соколова В.А. и др. СПб.: Наукоемкие технологии, 2023. 326 с.
- 29. Панов А.В., Онучин А.А., Зражевская Г.К., Шибистова О.Б. Структура и динамика пулов органического вещества на вырубках в сосняках лишайниковых среднетаежной подзоны Приенисейской Сибири // Известия РАН. Сер. Биологическая. 2012. № 6. С. 658—666.
- 30. *Паутов Ю.А., Ильчуков С.В.* Пространственная структура производных насаждений на сплошных концентрированных вырубках в Республике Коми // Лесоведение. 2001. № 2. С. 27—32.
- 31. Побединский А.В. Изучение лесовосстановительных процессов. М., 1966. 65 с.
- 32. Подзолистые почвы центральной и восточной частей европейской территории СССР. Л.: Наука, 1981. С. 118—152.
- 33. Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
- 34. Приказ Минприроды России от 27.05.2022 N 371 "Об утверждении методик количественного определения объемов выбросов парниковых газов и поглощений парниковых газов". Официальный интернет-портал правовой информации http://pravo.gov.ru, 29.07.2022
- 35. Птичников А.В., Карелин Д.В., Котляков В.М., Паутов Ю.А., Боровлев А.Ю., Кузнецова Д.А., Замолодчиков Д.Г., Грабовский В.И. Применимость международных индикаторов оценки нейтрального баланса деградации земель к бореальным лесам России // Доклады РАН. 2019. Т. 489. № 2. С. 195—198. https://doi.org/10.31857/S0869-56524892195-198
- 36. Пулы и потоки углерода в наземных экосистемах России / Под ред. Кудеярова В.Н. и др. М.: Наука, 2007. 315 с.
- 37. *Робакидзе Е.А., Торлопова Н.В., Бобкова К.С.* Химический состав жидких атмосферных осадков в старовозрастных ельниках средней тайги // Геохимия. 2013. № 1. С. 72—83. https://doi.org/10.7868/S001675251211009X
- 38. Старцев В.В., Севергина Д.А., Дымов А.А. Динамика содержания водорастворимых форм углерода и азота почв в первые годы после сплошной рубки // Почвоведение. 2024. № 6. С. 797—812. https://doi.org/10.31857/S0032180X24060028
- 39. *Стороженко В.Г.* Устойчивые лесные сообщества. Теория и эксперимент. Тула: Гриф и К., 2007. 192 с.

- 40. Смагин А.В., Садовникова Н.Б., Смагина М.В., Глаголев М.В., Шевченко Е.М., Хайдапова Д.Д., Губер А.К. Моделирование динамики органического вещества почв. М.: Изд-во МГУ, 2001. 120 с.
- 41. *Тебенькова Д.Н., Гичан, Д.В., Гагарин Ю.Н.* Влияние лесоводственных мероприятии на почвенныи углерод: обзор // Вопросы лесной науки. 2022. Т. 5. № 4. С. 21—58. https://doi.org/10.31509/2658-607x-202252-116
- 42. *Тужилкина В.В.* Структура фитомассы и запасы углерода в растениях напочвенного покрова еловых лесов на северо-востоке европейской России // Растительные ресурсы. 2012. Т. 48. № 1. С. 44—50.
- 43. Умарова А.Б. Преимущественные потоки влаги в почвах: закономерности формирования и значение в функционировании почв. М.: ГЕОС, 2011. 266 с.
- 44. *Щепащенко Д.Г., Мухортова Л.В., Мартынен-ко О.В., Коротков В.Н., Карминов В.Н.* Применение минеральных удобрений в лесном хозяйстве и углеродный бюджет лесов // Агрохимия. 2023. № 9. С. 81–96. https://doi.org/10.31857/S0002188123090107
- 45. Almaraz M., Simmond M., Boudinot F.G., Di Vittorio A.V., Bingham N., Khalsa S.D.S., Ostoja S. et al. Soil carbon sequestration in global working lands as a gateway for negative emission technologies // Global Change Biol. 2023. V. 29. P. 5988–5998. https://doi.org/10.1111/gcb.16884
- 46. Chertov O., Komarov A., Loukianov A., Mikhailov A., Nadporozhskaya M., Zubkova E. The use of forest ecosystem model EFIMOD for research and practical implementation at forest stand, local and regional levels // Ecological Modelling. 2006. V. 194. P. 227–232.
- 47. Fu Y., Feng F., Zhang X., Qi D. Changes in fine root decomposition of primary Pinus koraiensis forest after clear cutting and restoration succession into secondary broad-leaved forest // Appl. Soil Ecol. 2021. V. 158. P. 103785. https://doi.org/10.1016/j.apsoil.2020.103785
- 48. IPCC Climate Change 2007: Synthesis Report. Con-
- 48. IPCC Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2007. 104 p.
- 49. Karelin D., Goryachkin S., Zazovskaya E., Shishkov V., Pochikalov A., Dolgikh A., Sirin A. et al. Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: controls on spatial variability // Geoderma Reg. 2020. V. 22. P. e00290. https://doi.org/10.1016/j.geodrs.2020.e00290
- Kurganova I., Lopes de Gerenyu V., Khoroshaev D., Myakshina T., Sapronov D., Zhmurin V. Temperature sensitivity of soil respiration in two temperate forest ecosystems: the synthesis of a 24-year continuous observation // Forests. 2022. V. 13. P. 1374. https://doi.org/10.3390/f13091374

- 51. *Kutyavin I.N.* Vertical-fractional structure of aboveground phytomass of the tree layer of pine forests in the northern ural foothills (Komi Republic) // Contemporary Problems of Ecology. 2021. V. 14. P. 743–749. https://doi.org/10.1134/S1995425521070118
- 52. Mamkin V. Mukhartova Yu.V., Diachenko M., Kurbatova J. Three-year variability of energy and carbon dioxide fluxes at clear-cut forest site in the European southern taiga // Geography Environment Sustainability. 2019. V. 12(2). P. 197–212. https://doi.org/10.24057/2071-9388-2019-13
- 53. Morozov G., Aosaar J., Varik M., Becker H., Lõhmus K., Padari A., Aun K., Uri V. Long-term dynamics of leaf and root decomposition and nitrogen release in a grey alder (Alnus incana (L.) Moench) and silver birch (Betula pendula Roth.) stands // Scand. J. For. Res. 2018. V. 34. P. 12–25. https://doi.org/10.1080/02827581
- 54. Osipov A.F., Bobkova K.S., Dymov A.A. Carbon stocks of soils under forest in the Komi Republic of Russia // Geoderma Reg. 2021. V. 27. P. e00427. https://doi.org/10.1016/j.geodrs.2021.e00427
- 55. Portillo-Estrada M., Korhonen J.F.J. Pihlatie M., Pumpanen J., Frumau A.K.F., Morillas L., Tosens T., Niinemets Ű. Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to

- the forest floor in two European coniferous forests // Annals Forest Sci. 2013. V. 70. P. 367–379. http://dx.doi.org/10.1007/s13595-013-0273-0
- 56. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, 2022. https://www.R-project.org/
- 57. Scharlemann J.P., Tanner E.V.J., Hiederer R., Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool // Carbon Manag. 2014. V. 5. P. 81–91. https://doi.org/10.4155/cmt.13.77
- 58. Schepaschenko D., Moltchanova E., Shvidenko A., Bly-shchyk V., Dmitriev E., Martynenko O., See L., Kraxner F. Improved estimates of biomass expansion factors for russian forests // Forests. 2018. V. 9. P. 312. https://doi.org/10.3390/f9060312
- 59. Smith P., Cotrufo M.F., Rumpel C., Paustian K., Kuikman P.J., Elliott J.A., Mcdowell R. et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils // Soil. 2015. V. 1. P. 665–685.
- 60. *Woziwoda B., Parzych A., Kopeć D.* Species diversity, biomass accumulation and carbon sequestration in the understorey of post-agricultural Scots pine forest // Silva Fennica. 2014. V. 48. P. 23.

Carbon Pools and Flows in Coniferous-Deciduous Forests and Clearcutting

A. A. Dymov^{1, *}, A. F. Osipov¹, V. V. Startsev¹, N. M. Gorbach¹, D. A. Severgina¹, S. A. Ogorodnya², I. N. Kutyavin¹, and A. V. Manov¹

¹Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
² Faculty of Soil Science, Lomonosov Moscow State University, Moscow, 119991 Russia

*e-mail: aadymov@gmail.com, dymov@ib.komisc.ru

The results of a quantitative assessment of carbon pools and fluxes in a mid-taiga coniferous-deciduous forest and their changes after clear-cutting are presented. It was shown that up to 14.7 kg C/m^2 accumulated in the original forest. The main reserves are concentrated in the biomass of the tree stand (62.4%), soil (35.5%), biomass of ground cover plants (1.1%) and large woody debris (1.0%). During the cutting process, 6.57 kg C/m^2 is removed as part of the stem wood (44.8%) of the total carbon reserves of the ecosystem or 71.79% of the carbon of the biomass of the tree stand). In the first year after logging, 8.1 kg C/m^2 was detected in the ecosystem. Of these, 7.1% of carbon reserves are in forest vegetation, 66.8% (5.4 kg C/m^2) are concentrated in the soil. During clearing, the share of large woody residues increases significantly (1.9 kg C/m^2) (23.4%) of ecosystem reserves) due to the appearance of logging residues that have died as a result of felling, which in the future will have an impact on the flow of carbon dioxide into the atmosphere from its territory. As a result of clear cutting, the supply of wood litter to the soil surface is reduced by 42 times. The decomposition of organic matter inherited and produced during wood harvesting slightly ($\approx 10\%$) increased the supply of carbon through soil respiration. Logging leads to a decrease in carbon removal from litter. The data obtained will be used in assessing the impact of clear-cutting on the carbon cycle of taiga ecosystems.

Keywords: carbon pools, felling, Retisols, boreal forests, soil respiration