ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.373.5

ГЕНЕРАТОР МОЩНЫХ НАНОСЕКУНДНЫХ ИМПУЛЬСОВ КВАЗИПРЯМОУГОЛЬНОЙ ФОРМЫ

© 2024 г. С. В. Коротков^a, *, А. Л. Жмодиков a , Д. А. Коротков a

^аФизико-технический институт им. А.Ф. Иоффе Российской академии наук Россия, 194021, Санкт-Петербург, ул. Политехническая, 26

*e-mail: korotkov@mail.ioffe.ru

Поступила в редакцию 15.05.2024 г. После доработки 16.05.2024 г. Принята к публикации 03.07.2024 г.

Разработан генератор мощных наносекундных импульсов, содержащий накопительный конденсатор, отрезок коаксиального кабеля, а также замыкающий и размыкающий полупроводниковые ключи. При напряжении зарядки накопительного конденсатора 12 кВ генератор позволяет коммутировать в нагрузку 75 Ом квазипрямоугольные импульсы напряжения с амплитудой около 26 кВ, фронтом длительностью примерно 4 нс и спадом длительностью примерно 6 нс. Длительность импульсов по полувысоте составляет около 45 нс, "джиттер" относительно внешнего запускающего сигнала менее 2 нс. Показана возможность увеличения выходной мощности генератора и длительности импульсов выходного напряжения.

DOI: 10.31857/S0032816224050106 **EDN:** ETCIUA

1. ВВЕДЕНИЕ

В настоящее время высоковольтные импульсы наносекундной длительности используются во многих областях науки и техники, например, для создания высоковольтных электрических разрядов в технологических и экспериментальных устройствах. Высокая надежность электроразрядных устройств может быть обеспечена, когда высокое напряжение прикладывается к межэлектродному промежутку в течение достаточно длительного времени, которое определяется разбросом моментов пробоя. В устройствах с большим межэлектродным расстоянием оно может составлять лесятки нс.

Для создания мощных наносекундных разрядов широко применяются генераторы на основе емкостного накопителя энергии (ЕНЭ) и замыкающего ключа, способные формировать медленно спадающие импульсы высокого напряжения с длительностью десятки и сотни нс. Их основным недостатком является то, что величина входного напряжения, определяемая напряжением зарядки ЕНЭ, должна превышать

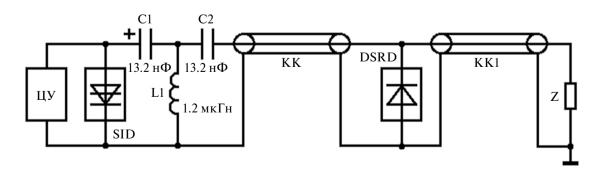
амплитуду выходного импульса напряжения. В этой связи определенным преимуществом обладают генераторы на основе индуктивного накопителя энергии (ИНЭ) и прерывателя тока, в которых амплитуда выходных импульсов напряжения может быть существенно больше величины входного напряжения.

Хорошо известны генераторы высоковольтных наносекундных импульсов с прерывателями тока в виде блоков последовательно соединенных диодов с временем выключения порядка наносекунд. В качестве таких диодов используются диоды DSRD [1], а также SOSдиоды [2], которые способны эффективно работать при более высокой, по сравнению с DSRD, плотности тока, но которые имеют несколько большее время выключения.

В генераторе с диодным прерывателем тока коммутируемая в нагрузку энергия исходно накапливается в сравнительно низковольтном накопительном конденсаторе. Когда происходит разряд конденсатора, то через диодные структуры прерывателя в прямом направлении протекает ток с принципиально малой длительностью (не более 300-400 нс), который позволяет накопить заряд вблизи эмиттеров диодных структур. Затем по цепи, содержащей диодный прерыватель и ИНЭ, пропускается быстро нарастающий ток с противоположной полярностью. При этом из диодных структур выносится накопленный заряд, они выключаются и протекающий через диодный прерыватель ток $I_{\rm D}$ коммутируется в параллельную цепь нагрузки.

Определенным недостатком генераторов с ИНЭ является то, что после достижения максимального значения выходной импульс напряжения экспоненциально убывает с постоянной времени T = L/Z (L — индуктивность ИНЭ, Z — сопротивление нагрузки). Таким образом, медленный спад выходного напряжения, требуемый для обеспечения надежного разряда при нестабильной задержке пробоя межэлектродного промежутка, может быть получен только при большой индуктивности L. В результате при формировании мощного импульса тока I_D сложным становится обеспечение его принципиально малой длительности, необходимой для быстрого выключения диодов.

Этот недостаток устранен в разработанном генераторе.


2. ОПИСАНИЕ УСТРОЙСТВА

Электрическая схема разработанного генератора приведена на рис. 1. Она построена на основе схемы, рассмотренной в работе [3]. Формирование наносекундных импульсов квазипрямоугольной формы осуществляется с помощью накопительного конденсатора C_1 , замыкающего ключа SID в виде блока последовательно соединенных динисторов с ударной

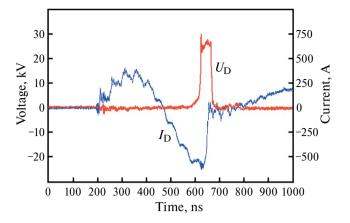
ионизацией [4], формирующей линии в виде отрезка коаксиального кабеля (КК) и прерывателя тока в виде блока DSRD.

Принцип работы генератора заключается в следующем. В исходном состоянии накопительный конденсатор C_1 заряжен до напряжения питания U_0 . После включения блока SID он перезаряжается. Ток перезарядки протекает через индуктивность L_1 , а также по цепи DRSD-КК-С₂. Длительность этого процесса значительно превышает время пробега электромагнитной волны по кабелю КК, поэтому основное влияние на процесс перезарядки C_1 оказывает индуктивность кабеля. Протекающий через DSRD и КК ток обеспечивает зарядку конденсатора C_2 и накопление заряда в диодных структурах блока DSRD. Затем через выходную цепь, содержащую кабель КК и блок DSRD, протекает ток разряда конденсаторов C_1 , C_2 , который выносит из диодных структур накопленный заряд. Когда блок DSRD выключается, в нагрузку Z через коаксиальный кабель KK₁ коммутируется энергия, накопленная в кабеле КК и в монтажных индуктивностях элементов выходной цепи. При этом на нагрузке формируется квазипрямоугольный импульс напряжения.

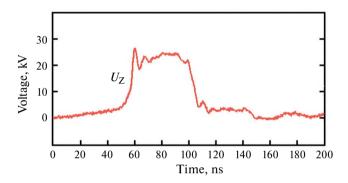
Для включения блока SID используется описанная в работе [5] цепь управления ЦУ. Она выполнена аналогично основной цепи генератора и содержит маломощный диодный прерыватель тока, замыкающий ключ в виде тиристора и накопительный конденсатор, исходно заряженный до напряжения 2 кВ. ЦУ формирует импульс запускающего напряжения с фронтом длительностью примерно 3 нс, амплитуда которого существенно (примерно в 2 раза) превышает величину напряжения, приложенного

Рис. 1. Электрическая схема генератора наносекундных импульсов квазипрямоугольной формы. КК: РК75-7-11, длина 4 м; SID: диаметр структур 16 мм, 6 шт. последовательно; DSRD: диаметр структур 20 мм, 48 шт. последовательно.

к блоку SID. При этом в динисторных структурах этого блока инициируется процесс ударной ионизации, обеспечивающий их переключение в хорошо проводящее состояние за время менее 1 нс. Затем высокая проводимость динисторных структур поддерживается благодаря инжекции носителей из эмиттерных областей.

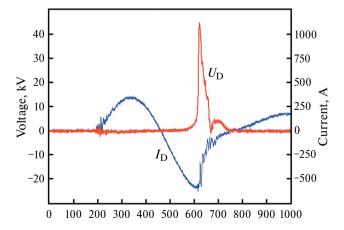

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

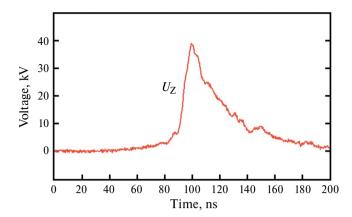
На рис. 2 приведены осциллограммы тока $I_{\rm D}$ через блок DSRD и напряжения $U_{\rm D}$ на блоке DSRD, полученные при подключении к выходу кабеля ${\rm KK}_1$ резистора Z=75 Ом. На рис. 3 приведена осциллограмма импульса напряжения $U_{\rm Z}$ на резисторе Z. Колебания на кривой $I_{\rm D}$ обусловлены волновыми свойствами кабеля ${\rm KK}$. Всплески напряжения на кривых $U_{\rm D}$, $U_{\rm Z}$ определяются влиянием монтажных индуктивностей элементов выходной цепи генератора.


Как следует из осциллограмм, амплитуда и длительность прямого тока через блок DSRD составляют соответственно примерно 400 A и примерно 270 нс. Блок DSRD выключается примерно через 200 нс после коммутации в него обратного тока при амплитуде этого тока примерно 550 A. Амплитуда импульса напряжения на нагрузке составляет около 26 кВ, длительность фронта примерно 4 нс, длительность спада примерно 6 нс, длительность импульса по полувысоте около 45 нс.

Представленные осциллограммы были получены при зарядке конденсатора C_1 до напряжения $U_0=12~\mathrm{kB}$ с помощью цифрового осциллографа Tektronix TDS3052C с полосой 500 МГц. Для измерения тока использовался пояс Роговского, который был калиброван с помощью датчика тока, полученного от Pearson Electronics, Inc. (модель 410). Для измерения напряжения использовался пробник Tektronix P6015A. Нагрузка была выполнена в виде сборки малоиндуктивных резисторов типа TBO, обеспечивающих возможность работы генератора на частоте 500 Гц.

В процессе экспериментов была определена нестабильность фронта импульса напряжения на нагрузке относительно фронта импульса управления замыкающего ключа цепи ЦУ. При 5процентной точности установки напряжений зарядки конденсатора C_1 и накопительного


Рис. 2. Осциллограммы тока $I_{\rm D}$ через блок DSRD и напряжения $U_{\rm D}$ на этом блоке.


Рис. 3. Осциллограмма напряжения $U_{\rm Z}$ на нагрузке $Z=75~{
m Om}.$

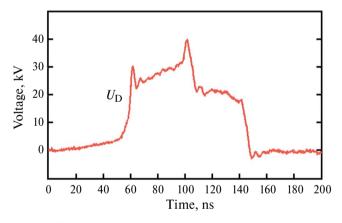
конденсатора цепи ЦУ разброс моментов приложения к нагрузке импульсов высокого напряжения не превышал 2 нс.

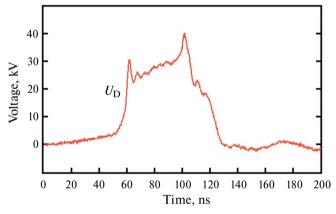
На рис. 4, 5 приведены осциллограммы, иллюстрирующие работу альтернативного генератора, в котором вместо коаксиального кабеля КК


Рис. 4. Осциллограммы тока $I_{\rm D}$ через блок DSRD и напряжения $U_{\rm D}$ на этом блоке при замене кабеля на индуктивность.

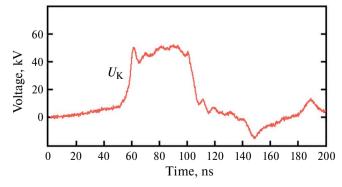
Рис. 5. Осциллограмма напряжения U_Z на нагрузке Z = 75 Ом при замене кабеля на индуктивность.

использовалась индуктивность, эквивалентная индуктивности этого кабеля.


При сравнении осциллограмм на рис. 3, 5 видно, что использование коаксиального кабеля позволяет увеличить длительность импульса U_Z по полувысоте с 25 нс до 45 нс.


На рис. 8, 9 показаны осциллограммы напряжения $U_{\rm D}$ на блоке DSRD и напряжения $U_{\rm Z}$ на нагрузке, полученные при использовании в качестве нагрузки искрового разрядника, заполненного атмосферным воздухом.

4. ВЫВОДЫ


Таким образом, разработанный генератор на основе малогабаритных блоков SID и DSRD позволяет формировать на нагрузке 75 Ом импульсы напряжения квазипрямоугольной формы с амплитудой около 26 кВ и длительностью по полувысоте примерно 45 нс. Длительности фронта и спада импульсов составляют соответственно примерно 4 нс и примерно 6 нс, нестабильность фронта относительно внешнего запускающего сигнала не превышает 2 нс.

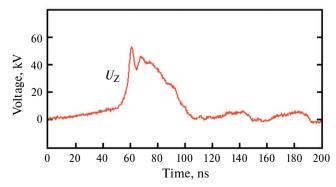

Рис. 6. Осциллограмма напряжения $U_{\rm D}$ на блоке DSRD при отключенной нагрузке.

Рис. 8. Осциллограмма напряжения $U_{\rm D}$ на блоке DSRD при использовании разрядника.

Рис. 7. Осциллограмма напряжения $U_{\rm K}$ на конце кабеля ${\rm KK}_1$ при отключенной нагрузке.

Рис. 9. Осциллограмма напряжения на разряднике, подключенном к концу кабеля KK₁.

нератора обеспечивают возможность увеличения выходной мощности и длительности импульсов выходного напряжения.

Выходная мощность генератора может быть увеличена при увеличении выходного тока путем увеличения напряжения зарядки накопительного конденсатора C_1 . Возникающая при этом задача разработки более мощных блоков SID и DSRD может быть решена при использовании в этих блоках большего количества последовательно соединенных диодных и динисторных структур, а также при увеличении рабочей площади этих структур и при использовании параллельного соединения блоков.

Длительность импульсов выходного напря- 5 жения может быть увеличена путем увеличения длины кабеля КК. Поскольку при этом

Принципы построения разработанного ге- увеличивается его индуктивность, принципиально малая длительность тока через блок DSRD может быть достигнута при уменьшении емкости конденсатора C_1 .

СПИСОК ЛИТЕРАТУРЫ

- Grekhov I.V., Efanov V.M, Kardo-Sysoev A.F., Shenderey S.V. // Solid-State Electron. 1985. V. 28. P. 597.
- Рукин С.Н. // ПТЭ. 1999. № 4. С. 5.
- Korotkov S.V., Aristov Yu.V., Zhmodikov A.L. // IEEE Trans. Plasma Sci. 2022. V. 50. P. 954. https://doi.org/ 10.1109/TPS.2022.3156386
- Korotkov S.V., Yu.V. Aristov, Korotkov D.A., Zhmodikov A.L. // Rev. Sci. Instr. 2020. V. 91. P. 084704. https://doi.org/ 10.1063/5.0015284
- Коротков С. В., Аристов Ю.В., Козлов К.А. // ПТЭ. 2023. № 4. C. 70. https://doi.org/ 10.31857/S0032816223040134