

УДК 533.599, 539.198, 544.277.4/.6, 544.435.2

ИСПОЛЬЗОВАНИЕ МЕТОДА МОЛЕКУЛЯРНО-ПУЧКОВОЙ МАСС-СПЕКТРОМЕТРИИ ДЛЯ ИССЛЕДОВАНИЯ ПРОЦЕССА РАССЕЯНИЯ ЧАСТИЦ КЛАСТИРОВАННОГО ГАЗОВОГО ПОТОКА

© 2024 г. Е. Д. Деринг^{а, *} , К. А. Дубровин^а, А. Е. Зарвин^а, В. В. Каляда^а, В. Э. Художитков^а

^а Новосибирский национальный исследовательский государственный университет Россия, 630090, Новосибирск, ул. Пирогова, 2

*e-mail: e.dering@g.nsu.ru

Поступила в редакцию 05.12.2023 г. После доработки 17.05.2024 г. Принята к публикации 21.06.2024 г.

Метод молекулярно-пучковой масс-спектрометрии (МПМС) адаптирован на газодинамическом стенде ЛЭМПУС-2 для исследования процесса рассеяния частиц свободномолекулярного газового потока на частицах фонового окружения. Проведена верификация использованной методики в неконденсирующихся потоках, результаты измерения эффективных сечений рассеяния атомов аргона и молекул азота сопоставлены с известными литературными данными. Исследован процесс рассеяния атомов и малых кластеров (олигомеров) аргона на находящемся в фоновом пространстве диоксиде углерода при различных средних размерах кластеров, образующихся в потоке $\langle N \rangle$. При $\langle N \rangle \approx 48$ полученные значения сечений рассеяния для атомов, димеров и тримеров аргона составили 39, 17 и 6 Ų соответственно. Установлено, что с ростом среднего размера кластеров в потоке эффективное сечение рассеяния атомов аргона уменьшается. Обсуждаются причины возникновения обнаруженного эффекта, а также особенности использования МПМС для исследования сверхзвуковых кластированных потоков.

DOI: 10.31857/S0032816224050225 EDN: EQYVLY

1. ВВЕДЕНИЕ

В настоящее время одной из активно развивающихся областей в газодинамике является изучение сверхзвуковых кластированных потоков [1—3]. Кластер Ван дер Ваальса представляет собой систему нескольких связанных слабыми силами частиц, рассматриваемую как промежуточное состояние между изолированными одиночными частицами и конденсированным веществом в объемной фазе. Физические и химические свойства такого ассоциата отличаются не только от таковых для вещества в объемной фазе, но и от свойств друг друга (на этапах малой нуклеации присоединение даже одной частицы к кластеру приводит к изменению его свойств). С ростом размера кластер может

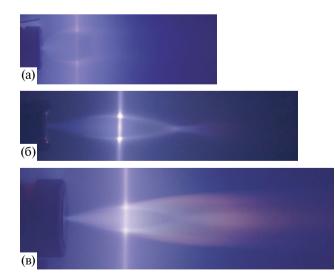
приобрести свойства как газа, так и жидкости или твердого тела, однако граница перехода между этими состояниями размыта. Площадь кластера $S_{\rm c}$, состоящего из N мономеров (атомов или молекул), связана с площадью мономера $S_{\rm a}$ следующим образом:

$$S_{\rm c} = N^{1/3} S_{\rm a} \,, \tag{1}$$

а доля поверхностных частиц N_s в общем числе мономеров в кластере N в приближении его сферичности (которое в действительности выполняется не всегда) составляет

$$N_{\rm s} = \frac{4\pi N^{2/3} R_{\rm a}^2}{\pi R_{\rm a}^2} = 4N^{2/3},\tag{2}$$

где $R_{\rm a}$ — радиус одного мономера [4]. Таким образом, отличительными особенностями


кластеров являются большая доля поверхностных частиц, а также в большинстве случаев малая удельная энергия частиц и малая энергия их связи между собой (порядка 0.01 эВ) [4]. Благодаря своим уникальным свойствам кластеры нашли практическое применение в технологиях напыления пленок [5], получения новых материалов [6], сверхгладкой полировки различных поверхностей [7] и др.

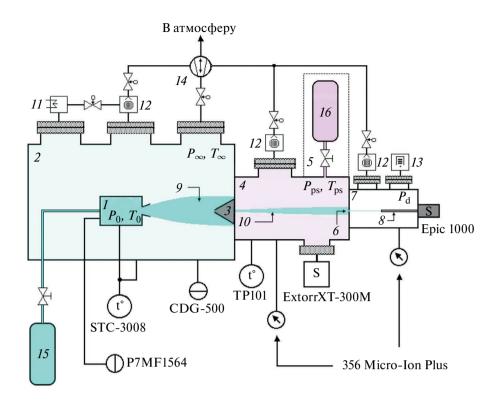
Одним из наиболее эффективных способов получения газовых кластеров является сверхзвуковое адиабатическое расширение газа через сопло в вакуум или очень разреженное пространство. При таком процессе образуются ассоциаты различных размеров, средний размер $\langle N \rangle$ которых зависит от сорта газа, параметров используемого сопла, а также давления P_0 и температуры T_0 газа в источнике [8]:

$$\langle N \rangle = 33 \left(\frac{\Gamma^*}{1000} \right)^{2.35}, \quad \Gamma^* = k P_0 d_{eq}^q T_0^i,$$
 (3)

где Γ^* — безразмерный параметр подобия Хагены, $d_{\rm eq}=cd_*$ / $tg\alpha$ — эквивалентный диаметр сопла, d_* — диаметр критического сечения сопла, α — угол раствора сопла, c, k, q, i — постоянные параметры, зависящие от симметрии расширения и характерные для конкретного сорта газа.

В отделе прикладной физики ФФ НГУ активно проводятся работы по изучению влияния процесса конденсации частиц на газодинамику

Рис. 1. Визуализация сверхзвуковой струи аргона, истекающей из звукового (a) и сверхзвукового (б, в) сопел в условиях отсутствия (a, б) и развитой конденсации в потоке (в).


и молекулярную кинетику сверхзвукового газового потока [9, 10]. Согласно работе [11], сверхзвуковая недорасширенная струя, истекающая в затопленное пространство, имеет либо бочкообразную форму с замыкающим диском Маха (рис. 1а), либо веретенообразную форму с Х-образной конфигурацией (рис. 1б). В работе [12] было обнаружено, что при развитой конденсации в потоке помимо традиционной недорасширенной сверхзвуковой струи образуется вторичное спутное течение больших размеров (кластерный след), предположительно состоящее из кластеров, способных преодолеть висячие скачки традиционной струи. Сталкиваясь с частицами фонового окружения, кластеры фрагментируются и постепенно отклоняются в сторону оси течения, формируя собственный поток, визуализированный посредством высокоэнергетичного пучка электронов на рис. 1в.

Обнаруженный эффект инициировал проведение экспериментального исследования процесса рассеяния частиц кластированного потока методом молекулярно-пучковой масс-спектрометрии [13—15]. В данной работе представлены результаты адаптации и применения данной методики для изучения процесса рассеяния частиц кластированного потока на фоновом газе на экспериментальном многофункциональном газодинамическом стенде ЛЭМПУС2 отдела прикладной физики ФФ НГУ [16, 17].

2. ЭКСПЕРИМЕНТАЛЬНОЕ ОБОРУДОВАНИЕ

Схематическое изображение измерительного участка показано на рис. 2. Форкамера с соплом 1 установлена на координатном устройстве, обеспечивающем ее перемещение по трем ортогональным направлениям и горизонтальное вращение на угол $\pm 90^{\circ}$ внутри камеры расширения 2, представляющей собой цилиндр диаметром 0.7 м и длиной 1.2 м (объем около 0.46 м³). Газ 15, адиабатически расширяясь через сопло, образует сверхзвуковую струю 9, из которой посредством конусообразной диафрагмы (скиммера) 3 формируется молекулярный пучок 10.

Для инициации процесса столкновений частиц молекулярного пучка с частицами фонового окружения в послескиммерную камеру 4 (объемом около 0.05 м³) через натекатель 5 осуществляется подача рассеивающего газа 16.

Рис. 2. Схематическое изображение измерительного участка стенда ЛЭМПУС-2: 1— форкамера с соплом, 2— камера расширения, 3— скиммер, 4— послескиммерная секция, 5— система натекания, 6— коллиматор, 7— детекторная секция, 8— датчик масс-спектрометра, 9— сверхзвуковой поток, 10— молекулярный пучок, 11—14— вакуумная откачная система (11— криогенные, 12— турбомолекулярные, 13— гетеро-ионные и 14—форвакуумные насосы), 15— рабочий газ, 16— добавляемый фоновый газ.

Частицы, не претерпевшие столкновений с фоновым газом, через коллиматор 6 попадают в детекторную секцию 7 (объемом около 0.03 м³) с установленным в ней квадрупольным масс-спектрометром 8 Hiden Epic 1000 с диапазоном регистрируемых масс до 1000 а.е.м. Разрешающая способность детектора лучше 1 а. е.м на уровне 10% от высоты соседних пиков одинаковой интенсивности. Динамический диапазон составляет $1:10^7$ в непрерывном режиме работы прибора. Относительная чувствительность масс-спектрометра — 0.1 часть на миллион. Ток эмиссии может варьироваться в диапазоне 1 мкА-2 мА, энергия электронов – 0.1–150 эВ. При проведении экспериментов были подобраны оптимальные значения указанных параметров, обеспечивающие максимальную амплитуду исследуемого сигнала: 75 мкА и 70 эВ соответственно.

Независимая откачная система камеры расширения 2 состоит из форвакуумных безмасляных насосов Kashiyama MU100 (1660 л/мин) и Anest Iwata ISP500B (500 л/мин), двух турбомолекулярных насосов Shimadzu TMP2203LMC

(4300 л/c - Ar), а также трех гелиевых криогенных насосов Helix Technology Cryo Torr8 (3600 л/c - Ar). Давление в камере расширения в зависимости от задач эксперимента и расхода газа через системы подачи поддерживается в диапазоне $10^{-4} - 10^2$ Па.

Разрежение в послескиммерной секции на уровне 10^{-6} до 10^{-2} Па поддерживается с помощью турбомолекулярных насосов Shimadzu TMP1003LM и Shimadzu TMP803LM (2960 л/с — Ar). Процентное соотношение компонентов фонового газа в послескиммерной секции контролируется с помощью квадрупольного масс-анализатора остаточных газов ExtorrXT300M, регистрирующего частицы в диапазоне масс от 1 до 300 а. е.м с разрешающей способностью лучше 1 а. е.м на уровне 10% от высоты пика.

Давление в детекторной секции $P_{\rm d}$ поддерживается в диапазоне $10^{-7}-10^{-5}$ Па посредством гетероионного насоса Thermionics PS100 (100 л/с) и турбомолекулярного насоса Shimadzu TMP-303 LM (320 л/с – Ar).

Температуры в форкамере сопла T_0 и камере расширения T_{∞} регистрируются с помощью двух каналов датчика Ketotek STC3008, размещенных на форкамере сопла и стенках экспериментального стенда соответственно. Погрешность измерений T_0 и T_∞ составляет не более 0.2%. Температура газа в послескиммерной секции $T_{\rm ps}$ измеряется с помощью электронного термометра ТР101 (точность измерений ± 1 °С в диапазоне температур от -20 до +80°С). Давление в форкамере сопла P_0 контролируется с помощью мембранного измерителя абсолютного давления Siemens Sitrans P7MF1564 в диапазоне $10^3 - 10^6$ Па с погрешностью 0.25%от максимального измеряемого значения. Давление в камере расширения P_{∞} регистрируется с помощью мембранно-емкостного вакуумметра Agilent Technologies CDG500, работающего в диапазоне 0.0133-133.32 Па (погрешность измерений $P_{\infty} - 0.3\%$). Давления в послескиммерной $P_{\rm ps}$, и детекторной $P_{\rm d}$ секциях измеряется с помощью вакуумметров Granville-Phillips 356 Micro-Ion Plus (погрешность измерения $P_{\rm ps}$ и $P_{\rm d}$ составляет менее 15%).

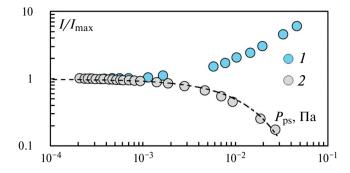
В настоящей работе использованы субмиллиметровые сопла различных конфигураций, параметры которых представлены в табл. 1.

Таблица 1. Параметры используемых в работе сопел

No	Тип	<i>d</i> ∗, мм	$d_{\rm a}$, mm	L, mm	α	\mathbf{M}_{a}
1	SN	0.51	_	_	_	1
2	SN	1.05	_	_	_	1
3	SSN	0.53	3.25	6.00	2.8⁰	8.2
4	SSN	1.00	3.60	6.00	12.2º	5.6
5	SSN	0.41	1.30	3.00	8.4⁰	5.0

Примечение: SN — звуковое сопло, SSN — сверхзвуковое коническое сопло, d_* — диаметр критического сечения сопла, d_a — диаметр выходного сечения сопла, L — длина диффузорной части сопла, α — полуугол раствора диффузорной части сопла, M_a — геометрическое число Маха на срезе сопла [18].

3. ВЕРИФИКАЦИЯ МЕТОДИКИ ИЗМЕРЕНИЯ


Для определения эффективного сечения рассеяния частиц молекулярного пучка, как правило, применяются два основных способа [15]. В первом давление газа в рассеивающей секции поддерживается постоянным. При перемещении детектора в плоскости, перпендикулярной оси пучка, осуществляются измерения интенсивности сигнала под различными углами к исходной оси движения частиц. Во втором способе, использованном в настоящей работе, регистрируются нерассеянные частицы, оставшиеся на оси молекулярного пучка, интенсивность которых связана с давлением рассеивающего газа $P_{\rm ps}$ следующим образом [14]:

$$\frac{I}{I_{\text{max}}} = e^{-n_{\text{ps}}l\sigma},\tag{4}$$

где $I_{\rm max}$ — амплитуда регистрируемого сигнала при $P_{\rm ps}$ $\rightarrow 0$, $n_{\rm ps} = P_{\rm ps} \ / \left(kT_{\rm ps}\right)$, l — длина послескиммерной секции, σ — искомое эффективное сечение рассеяния, k — постоянная Больцмана.

При проведении исследования процесса рассеяния молекулярного пучка аргона на частицах остаточного газа (также аргона) в условиях стационарного режима измерения было установлено, что относительная интенсивность регистрируемого сигнала возрастает при повышении давления $P_{\rm ps}$ (рис. 3, 1): наблюдается значительный эффект перетекания фоновых частиц из послескиммерной секции в детекторную, что и определяет вид получаемой зависимости. Следует отметить, что данный эффект может быть исключен с помощью модуляции полезного сигнала [19-22]. Однако ввиду технической сложности реализации данного подхода с использованием имеющегося в распоряжении детектора Hiden Epic 1000 с высокой разрешающей способностью для исключения описанного эффекта было решено использовать в качестве рассеивающего газ, отличный, но близкий по массе и размерам к частицам молекулярного пучка. Так, для исследования рассеяния молекулярного пучка аргона из предположения схожести характера рассеяния в качестве натекаемого фонового газа был выбран диоксид углерода.

Данное решение позволило практически полностью исключить влияние перетекания подаваемого через натекатель "внешнего" фонового газа из послескиммерной секции в детекторную на регистрируемый сигнал. Однако при проведении исследований следует учитывать, что в послескиммерной секции остается также рассеянная часть прошедшего через скиммер рабочего газа. Рассмотрим результирующий состав

Рис. 3. Сравнение относительной интенсивности сигнала, регистрируемого масс-спектрометром для атомов аргона, в случае использования в качестве рассеивающего остаточный (1) и иной (2) газы.

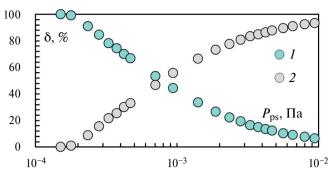
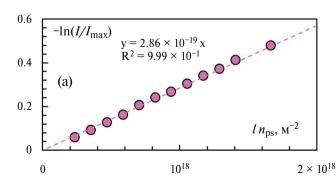



Рис. 4. Доля аргона (рабочий газ) (1) и диоксида углерода (внешний фоновый газ) (2) в объеме послескииммерной секции. Начальные параметры: $P_0 = 1.10^4 \, \Pi a$, $P_\infty = 0.27 \, \Pi a$, $X = 0.03 \, \mathrm{M}$, сопло № 2 (табл. 1).

фонового газа в послескиммерной секции, приведенный на рис. 4, в зависимости от давления $P_{\rm ps}$ для случая рассеяния частиц молекулярного пучка аргона (1) на фоновом диоксиде углерода (2). Очевидно, что при перекрытом вентиле натекателя в фоновом пространстве находится только не прошедший через коллиматор остаточный газ молекулярного пучка. Однако следует заметить, что при таком малом давлении $P_{\rm ps}$ рассеяния молекулярного пучка практически не наблюдается, а доля фонового газа, натекающего из послескиммерной секции в детекторную, пренебрежимо мала (рис. 3). По мере роста суммарного фонового давления в послескиммерной секции доля аргона падает, а доля диоксида углерода увеличивается (рис. 4). При давлениях свыше 10^{-2} Па практически весь фоновый газ в послескиммерной секции состоит из диоксида углерода. В свою очередь, в диапазоне давлений $10^{-3}~\Pi a < P_{\rm ps} < 10^{-2}~\Pi a$, определяющем значение искомого эффективного сечения о, доля фонового диоксида углерода превышает 70%, ввиду чего рассеяние частиц

молекулярного пучка происходит преимущественно на частицах напускаемого в секцию газа. Таким образом, при использовании газа другого сорта в качестве рассеивающих центров (рис. 3, 2) при росте давления $P_{\rm ps}$ интенсивность сигнала I, регистрируемая масс-спектрометром, преимущественно свободная от влияния перетекающего фонового газа, убывает, что согласуется с формулой (4).

Для верификации используемой методики были проведены измерения известных из литературных источников сечений рассеяния молекул азота (рис. 5а) и атомов аргона (рис. 5б) в условиях, когда вероятностью повторных столкновений рассеиваемых частиц можно пренебречь. Использованные при верификации режимы, согласно модели (3), свободны от конденсации частиц в потоке. Для удобства анализа полученных результатов на рис. 5 и далее в работе приведены зависимости $-\ln(I/I_{\text{max}})$ от In_{ps} . В данной интерпретации в соответствии с формулой (4) полученные экспериментальные

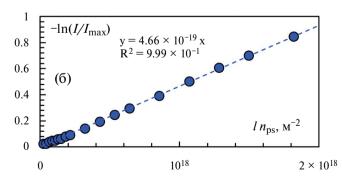


Рис. 5. Результаты измерений, полученные при рассеянии молекулярного пучка N_2 на атомах Ar (a) и Ar на молекулах CO_2 (б). Начальные параметры: $\mathbf{a} - P_0 = 50$ кПа, $P_\infty = 0.75$ Па, расстояние сопло—скиммер X = 40 мм, сопло № 1 (табл. 1); $\mathbf{6} - P_0 = 25$ кПа, $P_\infty = 1.09$ Па, X = 50 мм, сопло № 2 (табл. 1).

данные аппроксимируются прямой линией с коэффициентом, соответствующим искомому значению эффективного сечения рассеяния о.

Полученные результаты рассеяния азота на аргоновом фоне и аргона на фоне, состоящем из молекул диоксида углерода, хорошо описываются экспоненциальной зависимостью в диапазоне давлений $P_{\rm ps} \sim 10^{-4} - 10^{-2}$ Па, который соответствует диапазону чисел Кнудсена по продольным размерам камеры 4 от 100 до 1. При давлении меньше 10^{-4} Па число Кнудсена оказывается больше 100, ввиду чего рассеянием можно пренебречь, а при давлении свыше 10^{-2} Па и числе Кнудсена менее 1 начинают влиять многократные столкновения.

Полученные значения сечения рассеяния $\sigma_{\rm N2}$ и $\sigma_{\rm Ar}$ равны 29 и 47 Ų соответственно. Следует отметить, что измеренные значения сечения рассеяния σ не являются дифференциальными, ввиду чего их значения оказываются зависящими от величины телесного угла, внутри которого нерассеянные частицы достигают детектора. В настоящем исследовании величина телесного угла σ не превышала σ 10⁻⁶ ср. Если допустить, что в первом приближении связь сечения и телесного угла линейна [23], то полученные значения σ и σ и σ согласуются с референтными данными, представленными в работах [19, 22, 24], телесный угол в которых имеет порядок σ ср.

Так, в работе [24] полученное значение эффективного сечения рассеяния σ_{Ar} составляет 302 Å² при $\phi \approx 1.1 \cdot 10^{-5}$ ср. Также необходимо учитывать, что в настоящей работе рассмотрен вариант рассеяния на частицах иного сорта, обладающих несколько отличной (ввиду небольших отличий в массах и размерах) эффективностью рассеяния. Однако, несмотря на описанные погрешности, различия между измеренными и литературными значениями достаточно малы, что позволяет сделать вывод о возможности использования данного метода для определения эффективного сечения рассеяния в сверхзвуковых потоках. В следующем разделе рассмотрена возможность применения апробированного метода для определения сечений рассеяния частиц в кластированном потоке.

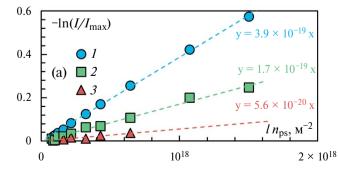
4. ОСОБЕННОСТИ ИЗМЕРЕНИЯ СЕЧЕ-НИЯ РАССЕЯНИЯ ЧАСТИЦ КЛАСТИРО-ВАННОГО ПОТОКА

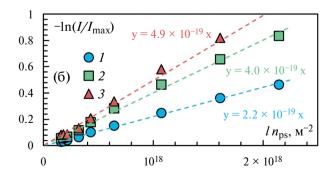
В данной работе при различном среднем размере кластеров в потоке аргона $\langle N \rangle$ регистрировалась зависимость относительной амплитуды сигнала для атомов и кластеров аргона малого размера от плотности газа в послескиммерной секции $n_{\rm ps}$ в режимах истечения, параметры которых представлены в табл. 2.

Таблица 2. Параметры использованных в работе режимов истечения аргона

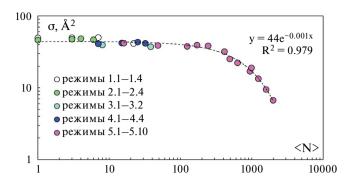
Режим	Сопло (табл.1)	P_0 , кПа	T_0 , K	<i>P</i> _∞ , Πa	$\langle N \rangle$, ат./кл.	σ, Å ²
1.1	№1	20	302.4	0.09	1	49
1.2		30	301.7	0.21	3	50
1.3		50	301.0	0.43	7	50
1.4		100	298.7	1.04	22	41
2.1	№2	10	305.0	0.27	1	46
2.2		15	304.1	0.49	3	47
2.3		20	303.0	0.76	4	48
2.4		25	299.6	1.09	6	47
3.1	№3	20	302.0	0.07	8	39
3.2		50	300.3	0.40	38	37
4.1	№4	10	303.8	0.21	7	41
4.2		15	297.6	0.37	15	42
4.3		20	300.4	0.60	25	43
4.4		25	299.2	0.80	32	42

Таблица 2. (окончание)


Режим	Сопло (табл.1)	P_0 , кПа	T_0, K	<i>P</i> _∞ , Πa	$\langle N \rangle$, ат./кл.	σ, Ų
5.1	№5	25	298.1	0.01	16	42
5.2		50	298.1	0.25	48	39
5.3		75	298.1	0.47	124	38
5.4		100	298.1	0.65	244	38
5.5		125	298.2	1.00	411	32
5.6		150	298.2	1.63	631	22
5.7		175	296.2	2.00	941	17
5.8		200	298.7	2.67	1230	13
5.9		225	299.5	3.60	1600	9
5.10		250	301.2	4.67	1988	7


На рис. 6 показаны полученные экспериментальные кривые рассеяния при малой (а) и развитой (б) конденсации в потоке в режимах истечения 5.2 и 5.6 соответственно. Исследование проводилось только для моно-, ди-, и тримерной компонент аргона, поскольку интенсивность сигнала, регистрируемого масс-спектрометром, для тетрамеров и кластеров большего размера более чем на четыре порядка меньше интенсивности мономерной компоненты сигнала и очень близка к уровню шумового сигнала. Полученные значения сечений рассеяния для атомов, димеров и тримеров аргона в случае (а) равны соответственно 39, 17 и 6 $Å^2$, а в случае (б) 22, 40 и $49 Å^2$. Следует отметить, что вследствие малости амплитуд сигналов тримеров погрешность измерений сечения для них значительна.

В работах [25, 26] было показано, что кластеры движутся в потоке с близкой к мономерной направленной скоростью, ввиду чего они обладают большим импульсом, зависящим


от массы ассоциата. Исходя из этого, очевидно, что кластеры, сталкиваясь с частицами фонового газа, отклоняются от оси потока слабее, чем мономеры, что соответствует меньшему значению сечения рассеяния (рис. 6а). Однако при проведении дальнейших исследований было обнаружено (рис. 6б), что с ростом среднего размера кластеров в потоке относительная амплитуда мономерной компоненты сигнала оказывается больше кластерной. При этом сечение рассеяния для атомов аргона, являющееся постоянной величиной, согласно работе [18], при разных условиях кластеризации в потоке с ростом среднего размера кластеров снижается: на рис. 7 приведены полученные значения сечения рассеяния атомов в кластированном потоке в режимах с различной степенью конденсации (табл. 2) в зависимости от среднего размера кластеров $\langle N \rangle$, рассчитанного по модели (3).

Поскольку сечение рассеяния зависит только от энергии взаимодействующих частиц, их

Рис. 6. Зависимость относительной амплитуды сигнала, регистрируемого масс-спектрометром для кластеров аргона малого размера (Ar₁ (1), Ar₂ (2) и Ar₃ (3)), при его рассеянии на CO_2 : **a** – режим 5.2, **б** – режим 5.6 (табл. 2).

Рис. 7. Зависимость сечения рассеяния атомов аргона от среднего размера кластеров в потоке для сопел различной конфигурации (табл. 1).

сорта и телесного угла, в котором проводятся измерения, постоянных в контексте настоящего исследования, можно предположить, что обнаруженный эффект напрямую связан с наличием в потоке кластеров.

Применение метода молекулярно-пучковой масс-спектрометрии в кластированном потоке связано с рядом особенностей, которые необходимо учитывать при проведении измерений. Использование в качестве детектора квадрупольного масс-спектрометра сопряжено с необходимостью ионизации частиц газового потока, при которой кластеры проявляют отличные от атомов (молекул) свойства. Ввиду малости удельной энергии связи частиц в кластере (порядка 0.01 эВ) [4] при столкновении с электроном высокой энергии (порядка 100 эВ) кластер фрагментируется на ассоциаты меньших размеров [27] или диссоциируется до мономеров. При этом кластер одного размера может фрагментироваться на осколки различных размеров, лишь один из которых будет обладать зарядом и регистрироваться масс-спектрометром. В результате нейтральные кластеры одного размера могут вносить вклад в различные компоненты регистрируемого масс-спектра. При малом $\langle N \rangle$ вклад фрагментированных и диссоциированных фрагментов будет незначителен, поскольку доля конденсата в потоке аргона при нуклеации частиц не превышает 10-12% [25, 26], а интенсивность мономерного сигнала существенно больше всех остальных. Однако, исходя из полученных данных, при увеличении $\langle N \rangle$ пренебречь эффектом фрагментации оказывается невозможным.

В работе [28] было показано, что в сверхзвуковом потоке с развитой конденсацией

наблюдается газодинамическое разделение частиц по массам: крупные кластеры, летящие на оси потока, оттесняют мономеры, существенно снижая долю мономерной компоненты в молекулярном пучке. Также заметим, что в свободномолекулярном течении основное различие в величинах скоростного отношения

$$S = \frac{W}{\sqrt{\frac{2kT}{m}}}\tag{5}$$

(W -направленная (гидродинамическая) скорость потока, k — постоянная Больцмана, T – локальная поступательная температура, m – масса частицы), показывающего отношение направленной скорости свободно молекулярного потока к тепловой, для мономеров и кластеров будет связано с различием масс. Таким образом, при бесстолкновительном пролете высоковакуумных камер тяжелые кластеры с большей вероятностью достигают отверстия коллиматора [29], а при натекании газа в послескиммерную секцию мономеры пучка, сталкиваясь с частицами фонового окружения, отклоняются от оси потока сильнее. В то же время использование ионизационного метода регистрации непременно приводит к деструкции кластеров, вклад от которой, усиленный указанными выше факторами, отделить невозможно, что налагает ограничения на область применимости данной методики для определения численных значений сечений рассеяния частиц в кластированных потоках, которую следует ограничить диапазоном $0 < \langle N \rangle < 200$, выход за пределы которого приводит к продемонстрированным искажающим эффектам.

5. ЗАКЛЮЧЕНИЕ

В работе представлены описание и верификация метода молекулярно-пучковой масс-спектрометрии, адаптированного на газодинамическом стенде ЛЭМПУС2 для изучения процесса рассеяния атомов и малых кластеров в сверхзвуковом газовом потоке. Показано, что полученные результаты в условиях корпускулярного потока хорошо описываются экспоненциальной зависимостью [14], а посчитанные значения сечений рассеяния $\sigma_{N2} = 29 \text{ Å}^2$ и $\sigma_{Ar} = 47 \text{ Å}^2$ хорошо коррелируют с литературными данными [19, 22, 24]. Также продемонстрировано, что при проведении измерений в сверхзвуковых потоках

с развитой конденсацией существенное влияние на результат оказывают факторы газодинамического разделения и фрагментации кластеров электронами высокой энергии. Получена нетривиальная экспериментальная зависимость сече- 13. Рамзей Н. Молекулярные пучки. Москва: ИЛ. ния рассеяния атомов аргона от среднего размера кластеров в потоке. На основе полученных данных определена область применимости описанного метода для исследования кластированных струй (для аргона $\langle N \rangle \leq 200$).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена с использованием оборудования ЦКП Прикладная физика физического факультета НГУ при поддержке Российского научного фонда (грант № 22-11-00080).

СПИСОК ЛИТЕРАТУРЫ

- Lazarev A.V., Semenov T.A., Belega E.D., Gordienko V.M. // J. Supercrit. Fluids. 2022. V. 187. P. 105631. https://doi.org/10.1016/j.supflu.2022.105631
- Ganeva M., Kashtanov P.V., Smirnov B.M., Hippler R. // Vacuum. 2014. V. 110. P. 140. https://doi.org/10.1016/j.vacuum.2014.08.019
- Haberland H. Clusters of atoms and molecules: theory. experiment, and clusters of atoms. Berlin: Springer, 2013. 422. https://doi.org/10.1007/978-3-642-84329-7
- Johnston R.L. Atomic and molecular clusters. CRC Press. 2002.
- Popok V.N. // Mater. Sci. Engin.: R: Reports. 2011. V. 72. № 7–8. P. 137. https://doi.org/10.1016/j.mser.2011.03.001
- Rao B.K., Khanna S.N., Jena P. // J. Cluster Science. 1999. V. 10. P. 477. https://doi.org/10.1023/A:1021948806958
- Yamada I., Matsuo J., Toyoda N., Aoki T., Seki T. // Current Opinion in Solid State and Materials Science. 2015. V. 19. № 1. P. 12. https://doi.org/10.1016/j.cossms.2014.11.002
- 8. Hagena O.F. // Rev. Sci. Instrum. 1992. V. 63. № 4. P. 23749. https://doi.org/10.1063/1.1142933
- Dubrovin K.A. Zarvin A.E., Kalyada V.V., Yaskin A.S., Dering E.D. // Vacuum. 2023. P. 112652. https://doi.org/10.1016/j.vacuum.2023.112652
- 10. Zarvin A.E., Khudozhitkov V.E., Kalyada V.V. // IOP Conf. Series: Materials Science and Engineering. 2018. V. 387. № 1. P. 012086. https://iopscience.iop.org/article/10.1088/1757-899X/ 387/1/012086/meta

- 11. Кисляков Н.И., Ребров А.К., Шарафутдинов Р.Г. // ПМТФ. 1975. № 2. С. 42.
- 12. Зарвин А.Е., Яскин А.С., Каляда В.В., Ездин Б.С. // Письма в ЖТФ. 2015. Т. 41. № 22. С. 74.
- 14. Леонас В. Б. // УФН. 1964. Т. 82. № 2. С. 287.
- 15. Калинин А.П., Родионова И.П., Родионов И.Д // Физико-химическая кинетика в газовой динамике. 2007. № 5. C. 135. http://www.chemphys.edu.ru/pdf/2007-07-27-001.pdf
- 16. Zarvin A.E., Kalyada V.V., Madirbaev V.Zh., Korobeishchikov N.G., Khodakov M.D., Yaskin A.S., Khudozhitkov V.E., Gimelshein S.F. // IEEE Transactions on Plasma Science. 2017. V. 45. № 5. P. 819. https://doi.org/10.1109/TPS.2017.2682901
- 17. https://opf.nsu.ru/ru
- 18. Абрамович Г.Н. Прикладная газовая динамика. Т. 1. Москва: Наука. 1991.
- 19. Rothe E.W., Neynaber R.H. // J. Chem. Phys. 1965. V. 43. № 11. P. 41779. https://doi.org/10.1063/1.1696664
- 20. Van Deursen A., Reuss J. // Int. J. Mass Spectr. Ion Phys. 1973. V. 11. № 5. P. 483. https://doi.org/10.1016/0020-7381(73)80077-4
- 21. Fedor J., Poterya V., Pysanenko S. Franik M. // J. Chem. Phys. 2011. V. 135. № 10. P. 104305. https://doi.org/10.1063/1.3633474
- 22. Phelps A.V. // J. Phys. Chem. Ref. Data. 1991. V. 20. № 3. P. 557. https://doi.org/10.1063/1.555889
- 23. Rothe E.W. Marino L.L., Neynaber R.H., Rol P.K., *Trujillo S.M.* // Phys. Rev. 1962. V. 126. № 2. P. 598.
- 24. Nenner T., Tien H., Fenn J.B. // J. Chem. Phys. 1975. V. 63. № 12. P. 54394. https://doi.org/10.1063/1.431278
- 25. Skovorodko P.A. // AIP Conf. Proc. 2011. V. 1333 P. 601. https://doi.org/10.1063/1.3562713
- 26. Korobeishchikov N.G., Skovorodko P.A., Kalyada V.V., Shmakov A.A., Zarvin A.E. // AIP Conf. Proc. 2014. V. 1628. P. 885. https://doi.org/10.1063/1.4902687
- 27. Schütte S., Buck U // Int. J. Mass Spectrom. 2002. V. 220. № 2. P. 183. https://doi.org/10.1016/S1387-3806(02)00670-X
- 28. Ермолаева Н.В., Иванов М.С., Куснер Ю.С., Николаев В.И. // ЖТФ. 1986. Т. 56. № 10. С. 18732.
- 29. Зарвин А.Е., Каляда В.В., Художитков В.Э. // Теплофизика и аэромеханика. 2017. Т. 24. № 5. С. 691.